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Abstract 

The paper is concerted with Roomba’s novel feature, which optimizes the 

summation of priorities through a vertex-weighted, undirected mesh graph.  The 

paper presents a brut-force algorithm to solve this problem.  The paper provides a 

comprehensive problem formulation, algorithm design, and the complexity analysis 

for the algorithm.  We further prove the correctness of the algorithm and the fact 

that it is unlikely for us to find a polynomial algorithm that solves this problem 

because the worst exists can be converted into to a well-known NP-complete—the 

longest path problem.  The algorithm proposed in this paper runs at an exponential 

time. 
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1 Introduction 
The paper is concerned with the optimization of the summation of priorities in a vertex-

weighted, undirected mesh graph.  This is potentially an implementation of a novel feature for 

Roomba.  The engineers need to manage this issue in real-life, in order to prepare the next 

generation of Roomba to deliver a more desirable service. 

 Hereon we present a mathematical description of the challenge presented above as a problem 

formulation, algorithm design, and complexity analysis.  We make the assumption that a Decision 

Researcher with a strong mathematical background is the target reader. 

2 Problem Formulation 
We investigate the input and output of this problem set.  It is clear this problem falls into the 

category of optimization problem.  In mathematics and computer science, an optimization problem 

is the problem of finding the best solution from all feasible solutions. In mathematics, in particular, 

the term optimization refers to the study of problems in which one seeks to minimize or maximize a 

real function by systematically choosing the values of real or integer variables from within an allowed 

set.1 

 

An optimization problem can be represented in the following way: 

Given: A function �: � � � from some set � to the real numbers. 

Constraint:    A set of inequalities ��, ��, … �
: �� 
 �� 
 ��
�, where � � 1,2, … �, �� and ��

� are 
two sets of real numbers 

Sought: An element �� in � such that ����� � ���� for all � in � (maximization). 

In our problem set, the expression could be written as: 

Given: A function ���� � ∑ �����
�
� � : ! � "#�,� | 1 & � & ' ( 1 & ) & �* denotes the 

vertices of a ' + � mesh graph, ,-,
; . � "/#�,� , #� ,0 1 | 1 & � & ' ( � & ) &
� ( 1 & 2 & ' ( 1 & 3 & � ( 4�� � 2 ( |) 5 3| � 1� 6 �|� 5 2| � 1 ( ) � 3�7* 
denotes the edges of ,-,
; ��,� 8 9 for each #� ,� � ! denotes the priorities of 
the vertices, where 9 denotes the set of natural numbers.  

Constraint:    One inequality  � �  ∑ :�� ,��; </#=,> , #�? ,�? 1 ; ∑ < @#�� ,�� , #���A?� ,���A?� B ;�C�
� �

�
� �

</#�D ,�D , #= ,> 1: � & �, where 1 & �� & ' ( 1 & )� & �; � as a constant denotes to 
battery capacity. 

                                                           
1 http://en.wikipedia.org/wiki/Optimization_problem 
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Sought: A sequence � of E distinct vertices #�? ,�? , #�F ,�F ,G G G , #�D ,�D  which maximizes the 

objective function f(σ), subject to the following constraint �, where 1 & �� & ' (
1 & )� & �. 

2.1 Preliminaries  
The problem formulation described above is based on a series of preliminaries and 

simplifications. Our problem is mostly concerned to maximize the summation of priorities of 

vertices on a known mesh graph, which indicates a continuous map of a house/apartment’s floor 

plan.  Implementation of this program is feasible in theory.  Some of the simplified constraints are, 

however, need to be further studied before any real-life application can be conducted. 

We will discuss several major preliminaries of our problem formulation in the following 

sections.  Of course, there are other conceivable simplifications that are not going to be discussed in 

this paper. 

2.1.1 Roomba stores the complete map 

In the algorithm presented in this paper, all the computations are conducted and finished off-

line.  It means that the best solution is a known when the robot starts its mission.  The robot follows 

an already computed path to carry out the cleaning duty.  Through out this path, the first portion is 

traveled in the robot’s traveling mode, which consumes less battery life per distance.  The second 

portion is traveled in the robot’s cleaning mode, which consumes a combination of cleaning battery 

consumption and a traveling battery consumption.   The third, also the last portion of the trip is 

traveled in the robot’s traveling mode.  The last section of traveling takes the robot to its home base 

where it starts the trip.   

Since the calculation is conducted and finished off-line, it requires the robot to have an intact 

memory of the entire map for a particular house/apartment’s floor plan. Conceivably, this 

computation can be done during the battery charging stage.   

As we discussed in the previous paper of this project, path planning is a one of the major topics 

in the field of mobile robot navigation.  Autonomous mobile robots are used in various applications 

such as in automatic freeway driving, cleaning of hallways, exploration of dangerous regions, etc.  

These applications demand robust and adaptable methods for path planning. 

Path planning can be divided into two categories, one is global path planning, where there exists 

a priori knowledge of the complete working area; and the other is local path planning, where the 

working area is uncertain.  Global path planning includes configuration space method, potential field 

method and generalized Voronoi diagram.  The planning is done off-line, and the robot has complete 

knowledge of its working area and its path when it starts.  Local path planning methods use 

ultrasonic sensors, laser range finders, and on-board vision system to “perceive” the environment; 

planning is done on-line2. 

As we can see, in this problem formulation, we do not consider the local path planning while just 

focus on the global path planning.  We take the entire map of the working area as a part of the input.  

                                                           
2 I.J. Nagrath, Laxmidhar Behera, K. Madhava Krishna, and K. Deepak Rajasekar, Real-time navigation of a 

mobile robot using kohonen’s topology conserving neural network 
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Once the decision is made off-line, the robot does not have a flexibility of changing the plan when it 

is in the working mode. 

In real life, however, we need to take into consideration of the human interference.  No matter 

how well the engineered robot memory and navigation systems are there is no promise that the map 

stays the same as it is when it was mapped by the robot.  For example, the furniture is mapped as 

barriers.  Based on the preliminaries of this paper, to the robot perspective, the furniture behaves 

just as other barriers, such as the wall.  The furniture however can move from place to place even 

during cleaning.  Therefore, in real life, there is no absolute up-to-date off-line map.  But, in our 

paper we only focus on global path planning and consider it as a simplification. 

We use the following scenario as an example (Figure 1). The single block barrier object can be a 

chair.  We use dashed line for traveling mode movements and solid line for cleaning mode 

movements.  In the first map, the chair is at the position as shown.  The computations are based on 

this map.  The best solution path is calculated as shown.  Then, the chair might be accidentally 

moved to a position that is on the solution path.  Since the computations are done off-line, the robot 

would still follow the out-of-date solution path.  Our problem formulation does not, however, 

provide a alternative option when the robot hits the unexpected barrier shown on the right side of 

the figure.     

 

Figure 1.  Simplification 1: Roomba stores the entire map, which should not change afterward. 

2.1.2 Roomba does not switch between cleaning and traveling modes within one trip 

This problem formulation is also based on the assumption that the robot is not capable of 

resuming cleaning mode within one trip.  This means that the cleaning mode movements can be 

represented by one continuous stretch of a solid line.  The solution provided by this problem 

formulation does not include the case when the robot needs to travel to a new area and resume 

cleaning in the new area. 

During cleaning, the robot takes the vertices that are not cleaned.  We assume once the vertex is 

cleaned the robot refused to go over it again in its cleaning mode.  Therefore, if the robot finishes 

cleaning within a certain area, even if it still has more than enough battery life to move to a new area 

to clean more, based on our assumption, it would not take this action.  In other words, once the 

robot starts one round of cleaning, it will continue until the end of its battery life is reached or the 
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vertices around its current position are all cleaned; once it ceases the cleaning mode, there is only 

one action that the robot takes—traveling home.   

In real life, however, as we discussed in the first paper, the robot has a built in feature which 

allows the machine to stop cleaning when it finishes one area.  The robot would travel to a new area 

and resume cleaning.  This is directed by the lighthouse navigation system.  The robot does not have 

the knowledge whether the entire map is covered or not.  It requests the lighthouse to give the 

further instruction.  Before the lighthouse signal, the robot has no idea where the entrance of next 

area is.  It would have to travel to that entrance as it receives the lighthouse signal.  During this 

travel, the robot uses its traveling mode.  The robot may re travel a stretch of path that has already 

cleaned. 

 Let’s use the following scenario as an example (Figure 2).  In real-life, the robot would be 

informed about the other area on the map which is shown as the right side of the grid.  The robot 

ceases the cleaning mode and travels to the new area where it turns on the cleaning mode and 

continues cleaning.  The total coverage of the vertices’ priorities is the summation of the two 

stretches of paths.  This is, however, not within the consideration of our problem formulation.  We 

assume that the robot computes the entire path off-line and manages to cover the most amount 

priorities by taking a single run powered in its cleaning mode.  Once it stops cleaning, it goes back to 

the home base.  The single solid path shown on the right figure is supposed to be the best solution 

based on our assumption.  If we assume the two figures below show cases that consume battery lives 

within the input battery capacity, it is possible that the left figure provides a better summation of 

covered priorities comparing the single solid line on the right figure.  But based on the preliminary of 

this problem formulation, we consider the right output as our best solution, while the left figure is an 

invalid output.  

 

Figure 2.  Simplification 2: Roomba does not cease and resume cleaning within one trip. 

2.1.3 Roomba cleans with a floor coverage of one 

There is another simplification of our problem formulation that needs to be pointed out.  In this 

paper we assume a strict restriction of floor coverage of one.  As we discussed in the previous paper 

of this project, the regular floor coverage of Roomba is three.  It is not a fixed number for different 

surface conditions.  The robot has a built-in mechanism to detect the dirtiness of a certain area.  

Generally, the assessment is based on the amount of dirt it picks up as it cleans.  Once the robot 
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detects a dirtiness crossing a certain level, it increases the floor coverage of this area.  This parameter 

is also user adjustable for some of the higher end machines. 

However, on the other hand, we can also consider this factor as part of the input.  It means that 

the input battery consumption for each vertex contains the multiplication factor of the floor 

coverage of this certain vertex.  Therefore, for our problem formulation, we impulse a strict floor 

coverage of one for the input grid map along with its vertices’ battery consumptions and priority 

values.  Intuitively, we can use the following scenario as an example.  

 

Figure 3.  Simplification 3: Roomba cleans with a strict floor coverage—one. 

2.2 Detailed Problem Formulation 
In this section, we will talk into the algorithm formulation of the branch problem and the 

heuristic distance algorithm that we are going to use in the final implementation of this project.  

2.2.1 Problem formation for the branch problem 

Obviously, the cleaning starting point does not have to be where the root is.  Once the starting 

point is chosen, our program should compute the best path that starts at that point.  The selecting of 

the starting point is, therefore, one of the determinants of the output.  Since the robot is capable of 

traveling to whichever starting point that is chosen, we can divide the problem into the number of 

possible starting points.  In other words, we convert the formulated problem into the following. 

Given: A function ���� � ∑ �����
�
� � : ! � "#�,� | 1 & � & ' ( 1 & ) & �* denotes the 

vertices of a ' + � mesh graph, ,-,
; . � "/#�,� , #� ,0 1 | 1 & � & ' ( � & ) &
� ( 1 & 2 & ' ( 1 & 3 & � ( 4�� � 2 ( |) 5 3| � 1� 6 �|� 5 2| � 1 ( ) � 3�7* 
denotes the edges of ,-,
; ��,� 8 9 for each #� ,� � ! denotes the priorities of 
the vertices, where 9 denotes the set of natural numbers.  

Constraint:    One inequality  � �  ∑ :�� ,��; /#= ,> , #�? ,�? 1 ; ∑ < @#�� ,�� , #���A?� ,���A?� B ;�C�
� �

�
� �

</#�D ,�D , #= ,> 1: � & �, where  ��, )� are fixed indexes; � as a constant denotes to 
battery capacity. 
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Sought: A sequence � of E distinct vertices #�? ,�? , #�F ,�F ,G G G , #�D ,�D  which maximizes the 

objective function f(σ), subject to the following constraint �, where  ��, )� are fixed 
indexes. 

Once the starting point is chosen, the traveling cost from the home base to this starting 

point can be calculated.  We will discuss the algorithm of conducting this calculation in the following 

section. We subtract this part of battery life from the input battery capacity.  We compute the 

feasibility of each step by comparing the expected battery consumption of taking this step to the 

battery life that is current available.  If the resulting battery life is a positive number, this step is 

conceptually possible to be a part of the solution path.  If this is the case, we shall continue on this 

path and take the next possible step.  The end cases come when we enter a dead end by taking a 

certain step or the battery life can not sustain any more cleaning.  When we encounter either of the 

base cases, we gather one possible solution path.  We compare the priorities collected in this path 

with the priorities collected in other possible solution paths.  The path with the highest priorities 

summation wins and shall be kept as the output of this particular branch problem.  We further 

compare all of the best solutions of paths start from all possible starting points.  The overall best 

solution is formed.  

2.2.2 Problem formulation for the traveling mode 

As we discussed in as our first preliminary, the computation concerted with this paper is 

conducted 100% off-line.  The robot remembers the entire map as a part of the program’s input.  The 

local path planning and on-site navigation is not within the scope this paper.  For a continuous map, 

there are some well-known distance heuristic algorithms.  If we consider the map is a mesh graph 

with no obstacles, Manhattan distance is a good candidate.  If we take into consideration of the 

obstacles on the mash graph, A* algorithm is an ideal candidate.  In the implementation of A* 

algorithm, we can still use Manhattan distance to provide the distance heuristic values, which update 

themselves as the program runs.  In the following sections, we will discuss these two algorithms in 

more details and take a look at their practical implementations for this project. 

Manhattan distance 

The definition of Manhattan distance is the distance, paths, lines, etc. which are always parallel 

to axes at right angles. For example, a path along the streets of Salt Lake City or the moves of a rook 

in chess3.  In a plane with �1 at ��1, H1� and �2 at ��2, H2�, it is |�1 5  �2|  ;  |H1 5  H2|.  Basically, 
it provides the shortest path from point to point on a grid graph with out allowing cutting corners 

under the preliminary that there is no obstacles block the way in the graph.  Manhattan distance fits 

our needs based on this problem formulation.  At a certain position, ��, )�, the robot has four possible 
options for its next step, left �� 5 1, )�, right �� ; 1, )�, up ��, ) ; 1� or down ��, ) 5 1�.  It does not 
travel following the diagonals.  For example from graph position ��, )� to �� ; 1, ) ; 1�.  

                                                           
3 Eugene F. Krause (1987). Taxicab Geometry. Dover. ISBN 0-486-25202-7 
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Figure 4.  Two examples of Manhattan Distance 

A* Algorithm 

In computer science, A* is a best-first, graph search algorithm that finds the least-cost path from 

a given initial node to one goal node.  It is a variant of Dijkstra’s algorithm, which is more suitable for 

a continuous grid-based map4.  The following functions denotes the values that the nodes store to 

apply A* algorithm.  The order of visiting is determined by the value of function ���� for each node. 
����: the actual shortest distance traveled from initial node to current node 

I���: the estimated (or "heuristic") distance from current node to goal 

����: the sum of ���� and I��� 
Let’s put this implementation into a simplified example (Figure 5).  We have the robot sitting at 

position �, and the destination is position M.  The starting point could be the docking station and the 
destination could be the calculated cleaning starting point.  The starting point could also be the 

calculated end point and the destination could be the docking station.  As we can see, the trip is 

symmetric.  The calculated starting point could also be taken as the calculated end point or vice 

versa.  We have two blocks colored with solid gray representing the obstacles in between the robot 

and its desired destination.  If � and M are located in two different rooms, we can think of the 

obstacles as the walls.  If � and M are located in the same room, we can think about the obstacles as 

the furniture.  The obstacle is, however, not allowed to change once the room is mapped as we 

discussed in the preliminary section. 

In this example (Figure 5), the number shown as � �  �� represents the current ���� for this 
grid, the number shown as � �  �� represents the local ���� for this grid, and the number shown as 

I �  �N represents the heuristic distance value of the grid to the destination grid M, I���.  For this 
implementation, we used Manhattan distance to compute the estimate distance.  As we discussed in 

the previous section, Manhattan distance fits our need.  The value is the best possible distance from 

a particular node to the destination node.  If there is any Manhattan distance path available, the 

robot would eventually take that path as the algorithm executes.  If there is no Manhattan distance 

                                                           
4 http://en.wikipedia.org/wiki/A*_search_algorithm 
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path available to get to the destination, the robot would adjust the value of the actual ���� for the 
nodes on the way, and try get to the destination taking the shortest way around the obstacles. 

The figures used shading to represent the closed set, which includes the nodes that are already 

explored.  The open set is shown as nodes without shading.  They contain function values and parent 

pointers.  The nodes in the open set are waiting to be examined.  They are stored in a priority queue 

based on their objective function value, ����.  They are polled out one after another and placed into 
the closed set.  At the same time, we add their directly connected neighbors that are not in the open 

set into the open set, and update their ���� and ���� values.  The final figure demonstrated the 

solution path with solid black arrows.  The final solution is drawn based on the parent pointer from 

the destination node.  We trace back from M.  Every node on the way is a member of the solution 

path.  We finish gathering the nodes of the solution when we reach the starting point �. 
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Figure 5.  The execution of A* algorithm that takes Manhattan Distances as the heuristic distances 
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2.2.3 Conclusions of problem formation 

So far, we discussed the main thoughts of the algorithm that we are going to use to compute the 

best solution for the branch problem and the algorithm for the traveling mode.  Combining these 

two, we formed a solution algorithm to maximize our final objective function ���� � ∑ �����
�
� � .  The 

program would use the A* algorithm to calculate the distance and the battery consumption, which is 

linear proportional to the distance, from the home base to the chosen starting point.  Then it tries all 

four possible steps while computing the feasibility of each step.  This is done by keep computing how 

much battery life it needs to travel home from a certain position.  The branch best solutions are 

gathered through this computation.  Then, the final solution is chosen from the branch best 

solutions. 

 In our final solution data collection, there are several components.  It includes the 

summation of the priorities, which is supposed to be the maximum possible based on the input.  It 

includes the battery consumption of this trip, which is smaller but should be somewhat close to the 

input battery capacity.  Last but not the lest, it includes a sequence � of E distinct vertices, 
#�? ,�? , #�F ,�F  G G G , #�D ,�D  which maximizes the objective function, ���� � ∑ �����

�
� � , subject to the 

constraint, inequality ∑ :�� ,��; /#= ,> , #�? ,�? 1 ; ∑ < @#�� ,�� , #���A?� ,���A?� B ; </#�D ,�D , #=,> 1 &�C�
� �

�
� �

�.  Optionally, it could also include the information of the path it travels from the home base to the 

starting point and the path from the end point back to the home base.  These paths are not 

conserved as the required output.  They are, however, helpful to build the final applet product as the 

user can see how the robot avoids the obstacles on the way while still manages to take the shortest 

possible path from place to place. 

2.3 Property of Optimum Solutions 
The algorithm we present in this paper provide an absolute solution for a routing maximizing 

problem.  It is different from an approximation algorithm that provides desirable heuristic solutions, 

although the latter approach is more commonly conducted in real-life.  We will later discuss in the 

algorithm complexity analysis section that the run-time of this algorithm is not polynomial.  It grows 

very exponentially as the problem size grows.  It is conceivable that there exist approximation 

algorithms to partially solve the problem with runs at a reasonable speed.  The run-time is, however, 

not the first priority of this design.  The ultimate goal for this algorithm design is the correctness of 

the final single solution. 

 As we can see, the algorithm is a brut-force algorithm that traverses all possible paths to find 

the solution path.  Before actually examining the rest of the possible vertices, we do not have the 

knowledge of whether certain vertices are not worth visiting.  The final output is generated after 

coving all possible steps of all vertices that is under examination.  Therefore, if we can prove that the 

algorithm successfully traverse the entire graph within it battery life allowance and returns the 

longest possible path, we prove the correctness of the optimization property. 

Proof of graph coverage for the brute-forth algorithm 

Suppose we have more than enough battery capacity to travel as many vertices as we need in a 

mesh graph.  This is the case, when we get to traverse the entire graph with no constraints.  
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Therefore, we need to prove the graph is completely traversed and the longest path is return as the 

output of our algorithm if this case occurs. 

 Suppose there exists one vertex # that is not traversed the whole time when the algorithm 

executes with a sufficient battery capacity input.  The vertex can be one of the three vertices, a corner 

vertex that has two neighbors, an edge vertex that has three neighbors, or a middle vertex that has 

four neighbors.  Based on the assumption, the vertex # is never examined.  In other words all paths 

that cover it neighbors stop at where the neighbors are. 

This implies one of the base cases is hit while examining the neighbor vertices.  Since we also 

assumed that the battery capacity that we are considering here is more than enough, the only base 

case left is that the neighbors are facing dead ends.  That is to say, there are no available further 

steps to take on those paths.  All of the adjacent vertices are already covered on the paths or the 

boundaries are reached.  That is how the paths all stop at the positions where the neighbors are. 

We observe a conflict.  As part of the assumption, vertex # is never examined.  The fact is any of the 

paths that cover #’s neighbors can not stop at where the neighbors are because a next step is always 
available as long as # is still un-explored. 

Therefore, we proved that the graph is completely covered in the algorithm presented in this 

paper. 

Simplified example of the graph traversal 

Let’s consider a mesh graph with six vertices (Figure 6).  We can see that all vertices are 

traversed.  All possible paths in the graph are examined.  If we plug this graph into the algorithm 

with a sufficient battery capacity, all path solutions would be eventually compared and the solution 

with the greatest summations of priority would be chosen as the final output. 

In this example, we use shading to indicate traversed vertices.  We use dark color solid line 

arrow to represent the currently examining vertex.  We use light color solid line arrow to represent a 

pointer point to the previous vertex on a particular path.  The leaf graphs in the tree structure 

describe all possible paths that the graph can product with the top light most vertex as the starting 

point. 

In this example, the longest paths are the ones that cover all vertices in the graph.  It does not 

have to be the case.  The longest path might hit the end case before covers all vertices.  Even if the 

longest paths do not contain certain vertices, those vertices are covered by other paths as we proved 

above.  
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Figure 6.  A tree structure demonstrates the graph traversal in this algorithm design. 

3 Algorithm Design 
The algorithm is designed based on the problem formulation described above.  Generally 

speaking, in the outer loop, we go through all vertices other than the home base to examine the 

branch best solutions when each vertex is chosen as the starting point.  Then, we take all possible 

steps to explore the path using recursion.  The path terminates when it hit one of the tow based 

cases:  when the front most vertices on the path is blocked.  There are no further steps to take; when 

the battery life is exhausted and can not sustain cleaning more vertices. 

The abstract data types created for this algorithm includes the Graph, the BooleaMatrix, the 

GraphSolution, and the Vertex node.  Mostly, they are just collections of data that help us to present 

data more clear.   

In the Graph data type, we store the information relevant to the input mesh graph.  Namely, 

they are the width, height of the mesh graph, the home base vertex, the battery capacity, the battery 

consumption for each vertex in the mesh graph, the priority value for each vertex in the mesh graph, 

the positions of obstacles.  This is an immutable class. 
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In the BooleanMatrix data type, we store the information indicating whether the vertices are 

covered or not by the particular path.  It has a same size as the input mesh graph, Graph.  It always 

starts with all false values.  Once the vertex is covered, it is marked with true.  By looking up this 

matrix, we can decide if a vertex is blocked as a dead end or not.  This is a mutable class as we need to 

mark and unmark elements. 

In the GraphSolution data type, we store information relevant to the solution.  It contains a 

distinct sequence of vertices and the summation of priorities of this sequence of vertices.  Of course, 

we can always compute the summation of priorities if we know about the sequence of the vertices.  

However, this summation value is used all the time through the algorithm execution, repeating the 

computation dramatically impair the performance.  This is an immutable class.  

In the Vertex data type, we simply store the information of the coordinate information of the 

vertex in the mesh graph.  This is an immutable class. 

In the pseudo code provided in this paper, we do not go into details of all of the data types.  The 

accessors and mutators for each data type should be clean by referring to the paragraphs above. 

3.1 Key Idea 
As we discusses, this algorithm is a brute-force algorithm that traverses every possible path 

under the constraint of battery allowance and compares the summation of priorities for all these 

paths to select the final optimization solution.  The correctness of the graph traverse is proved in the 

property of optimization solution section.  Here, we discuss more into detail of the end cases of this 

algorithm. 

3.1.1 Base case 1: dead end 

The first end case is that the current front most vertices on the paths are blocked (Figure 7).  It 

could be surrounded by vertices that are already covered on the same path or the boundary of the 

map.  As we discussed in the preliminary section that we impose a strict floor coverage of one, we 

don not allow the robot back track the vertices that are already cleaned.  At the same time, the 

problem is also constructed based on the assumption that the robot does not have the ability of 

resuming the cleaning mode within one round.  This means, when the dead end case is hit, there is 

only one option for the robot—returning the home base.   The following graph shows two scenarios 

for this case.  The shaded vertices represent the blocked vertices for each of the scenarios.  Even if at 

the dead end the robot still has enough battery to conduct more cleaning work, it can not take that 

action. 
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Figure 7.  Two examples of end case 1: dead end (blocked end). 

3.1.2 Base case 2: battery capacity can not sustain more cleaning 

The second end case is when the battery life can not sustain any more cleaning.  When we 

examine the current vertex, we calculate the battery consumption of cleaning this vertex plus the 

battery consumption of traveling back to the home base from this vertex.  We compare this 

summation with the battery life that we have at that point.  If we have enough, then this vertex is 

taken as part of the potential solution; if not, the robot needs to go back to the home base without 

cleaning this vertex. 

3.2 Pseudo Code for the algorithm 
Based on the key ideas of this algorithm design, we present here the pseudo code for this 

algorithm.  As we decideded, the detailed information of the abstract data types is not included in 

this paper.  The accessors and mutators method calls should be clear by referring to the previous 

section where each abstract data type is described. 

We do not provide the pseudo code for A* algorithm implementation in this paper.  It will be 

applied directly to the algorithm implementation of this project.  According to the project 

requirement, we take the distance from point to point as a given.  Here, we use name “distance” as 

the method name.  It will be further created by implementing A* algorithm.  The method takes the 

position of the home base and the position of a vertex in the mesh graph.  In the pseudo code, we 

pass in the coordination of the vertex and the coordination of the home base as the method’s 

parameters. 

 

1 Graph  input; 

2 BooleanMatrix  matrix; 

3 int  maxGoodness; 

4 GraphSolution  output; 

5 Stack<Vertex>  sequence; 

 

JADE-MESH-OUTERLOOP(Graph  graphInput) 

6 input ← graphInput; 
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7 matrix ← initialize as the size of graphInput and populate with false; 

8 maxGoodness ← the minimum integer; 

9 output ← null; 

10 sequence ← initialize as a new object; 
11 for int i ← 0 to i ← graphInput.width; i++ { 

12         for int j ← 0 to j ← graphInput.height; j++ { 

13                 JADE-MESH-RECURSION (i,j, 0, graphInput.capacity – capacityToBase(i,j)); 
14         } 
15 } 

16 return  output; 

 

JADE-MESH-RECURSION(int  x, int  y, int  goodness, int  capacity) 

17 if  isBlocked(x, y) = true or isBatteryExhausted(x, y, capacity) = true { 

18         If  output = null or goodness > maxGoodness { 

19                 mxGoodness ← goodness; 

20                 Output ← new GraphSolution(sequence, goodness); 

21           } 

22           return; 

23 } 

24 sequence.push(new Vertex(x, y)); 

25 matrix.mark(x, y); 

26 int  newGoodness ← goodness + input.priority(x, y); 

27 int  newCapacity ← capacity – input.comsumption(x, y) – 1; 

28 JADE-MESH-RECURSION(x – 1, y, newGoodness, newCapacity); 
29 JADE-MESH-RECURSION(x + 1, y, newGoodness, newCapacity); 
30 JADE-MESH-RECURSION(x, y – 1, newGoodness, newCapacity); 
31 JADE-MESH-RECURSION(x, y + 1, newGoodness, newCapacity); 
32 sequence.pop(); 
33  matrix.unmark(x, y); 
34 } 
  

The helper methods used to conduct here are listed as below.  As we decided, the heuristic 

distance method—A*algorithm is not presented.  We use “distance” as its method name.  It is used in 

the computation of battery life needed to travel from place to place. 

 

CAPACITYTOBASE(int  x’, int  y’) 

1 return  distance(input.base.x , input.base.y, x’, y’); 

 

ISBATTERYEXHAUSTED(int  x, int  y, int  capacity) 

2 if  capacityToBase(x, y) + input.consumption(x, y) + 1> capacity { 

3         return  true; 

4 } 

5 return  false; 

 

ISBLOCKED(int  x, int  y) 
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6 if  x < 0 or x <= matrix.width or y < 0 or y >= matrix.height { 

7         return  true; 

8 } 

9 if  x = input.base.x and y = input.base.y { 

10         return  true; 

11 } 

12 return  matrix.isMarked(x, y); 

 

3.3 Conclusion of Algorithm Design 
As a brief summery of the algorithm design, we use the following example to demonstrate the 

computation procedure.  We have a mesh with four vertices in this example.  We assume the top left 

vertex � is the home base vertex.  Therefore, we have three options of the starting point shown as 

the second level of the tree structure.  They are the other three vertices, M, � or O.  For each starting 
point option, we examine all available neighboring vertices.  A new candidate path is generated after 

each step.  We end up having 9 candidate paths.  Coincidently, every chosen starting point generates 

three candidate paths.  It does not necessarily always true that the chosen starting points contribute 

evenly.  The paths generated from a particular map with a chosen starting point are determined by 

the obstacles of the map, the position of the starting point and many other factors.  

For each candidate path, there are several data fields associated with it, a distinct sequence of 

vertices that represent the path, a battery consumption value by taking this path, a summation of 

priorities that can be collected by taking this path.  The sequence of vertices is of course the final 

output required as the project’s goal.  The battery consumption tells us the feasibility of the path 

when taking into consideration of the battery capacity constraint.  The summation of the priorities 

helps us to eventually decide that which one is the final maximization solution among the feasible 

paths. 

Notice that in this example we first list out all possible paths without considering the battery 

capacity input.  This is to assist the later analysis for all possible combinations of different battery 

capacity input values.  In the algorithm, however, once the base case of battery consumption 

overflow is hit, program would not compute any of the following paths along this way.  For instance, 

in the figure below, if the path 2 is determined to have a battery consumption overflow, path 5 and 

path 9 would not be calculated. 
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Figure 8.  A simplified example of our algorithm. 

 

After these computations, we generate the candidate paths and the field data that we care about 

for each of them.  Now, if we take into consideration of the battery capacity constraint, we would get 

the final optimization solution.  We use the following tables to display the relationships between 

different battery capacity inputs with the candidate solutions. 
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Path of Vertices Battery Consumption Summation of p Values  

D, C, B 9 10 

B, C, D 9 10 

C, B 7 8 

B, C 7 8 

D, C 8 7 

C, D 8 7 

C 6 5 

B 4 3 

D 5 2 

 

Battery Capacity Input C Optimized Solution Path 

� � 9 D, C, B or B, C, D 

7 & � 
 9 B, C or C, B 

� � 6 C 

4 & � 
 6 B 

� 
 4 null 

 

By observing the second table, the relationship between the battery capacity input and the final 

optimal solution in this mesh graph is clear.  When we have more than 9 units of battery life, we can 

travel the longest path in this graph, which include all of the vertices of the graph.  Keep in mind that 

the longest path may not include all of the vertices, although in this particular example, it does.  If 

we have battery life 7, or 8, since we consider this variable is an integer, we get to clean vertex M and 
�.  The order of these vertices does not matter.  If we have a battery life of 6, we get to clean vertex 

�.  If we have a battery input of 4, or 5, we would clean M.  A battery capacity input less than 4 is not 
enough to clean any vertex of this graph.    

Notice that for the paths that contain more than one vertex, there are always reversed paths 

that provide the same summation of p values and the same battery consumption.  This is because the 

traveling behavior is symmetric.  Once a particular path is chosen, the ending point of this path can 

be used as the starting point as well. 

4 Computational Complexity Analysis 
In this section, we shall analyze the complexity of the algorithm based on the pseudo code.  First 

we discuss the time complexity.  The time complexity expectation of this algorithm should be slow 
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because this is a brute-force implementation.  The space complexity expectation of the algorithm 

should reasonably ideal.   

4.1 Time Complexity 
The time complexity of this algorithm is analyzed based on the pseudo code.  The first three 

methods are helper methods to perform computation expressed in the Jade-Mesh-OuterLoop and 

Jade-Mesh-Recursion methods.   

4.1.1 Time complexity of Jade-Mesh-OuterLoop  

It is obvious that the Jade-Mesh-OuterLoop loops through all vertices in the graph.  The graph is 

stored as an array, the two coordinate indexes, � and ) are used to access the vertex associated 
information in the graph.   Therefore, the Jade-Mesh-OuterLoop method runs at a time complexity 

of T�!�. 

4.1.2 Time complexity of Jade-Mesh-Recursion  

The Jade-Mesh-Recursion method is a simple recursive function, which checks two base cases 

and recursively call itself by passing in the next vertex position.  We shall use recursion tree to 

estimate the runtime of this algorithm and prove the guess use substitution.   

The base cases checking in Jade-Mesh-Recursion method take T�1� time, since the helper 

methods isBlocked and isBatteryExhausted both take T�1� time.  The recursive calls can be expressed 

as the equation (1) below: 

U��� � 4 · U�� 5  1�  ;  T�1� (1) 

Apparently, equation (1) can not be solved by the master’s method because 1 is not a valid base 
number for logarithm.  We draw the following recursion tree.  By examine the recursion tree, we 

guess that the run-time of Jade-Mesh-Recursive runs at a time complexity of T�4
�. 
 

 

Figure 9.  The Recursion Tree used to estimate the time complexity of our algorithm. 
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In order to prove correctness of our guess using induction, we need to first proved the bases 

case/cases.  The base case for this algorithm is when � �  1.  As we can see from the recursion tree, 

the program takes T�1� � T���� time to compute in this case.  We can also test � �  2.  The 
program takes            4 · T�1� � T���� time in this case.  The base cases are therefore proved. 

Then we need to further prove the common cases hold.  We assume that T�4
� holds for 
U�� 5  1� &  : · 4
C�, of an appropriate choice of constant : W  0.  We need to prove that it holds 

for U�� � &  : · 4
.  

U��� � 4U�� –  1� ;  T�1� 

&  4: · 4
C� ;  T�1� 

�  : · 4
 ;  T�1� 

&  : · 4
  

For any constant : W 0 the conversion above holds.  Therefore, we proved of the run-time 

complexity is T�4
� of this algorithm by induction.  The input size of Jade-Mesh-Recursion is the 

number of vertices, therefore the run-time analysis of Jade-Mesh-Recursion is T�4Z�. 

4.1.3 Time complexity of the entire algorithm 

As we decided, the outer loop of this algorithm, the Jade-Mesh-OuterLoop method, takes T�!�; 
the loop body, Jade-Mesh-Recursion method, takes T�!\�.  The overall run-time of this algorithm is 

therefore the multiplication of these two. 

T�!� + T�4Z� � T�! + 4Z� (2) 

The recursive method, Jade-Mesh-Recursion, runs at an exponential time T�4Z�., the outer 
loop, Jade-Mesh-OuterLoop, runs at a lower term T�!�.  Therefore the combine also runs at an 

exponential time, T�! + 4Z�, as shown above. 

4.2 Space Complexity 
The space usages of this algorithm are mainly associated with the several data collector ADTs.  

We used two matrices to store the information regarding the mesh graph.  The input matrix stores 

information such as the priority values and battery consumptions for the all vertices.  The Boolean 

matrix stores information about the vertex coverage.  These two data types take a space linear 

proportional to the number of input graph vertices, T�!�.  We also have a Vertex data type which 

stores the coordinate information of the vertices in the input mesh graph.  The stack of Vertex 

temporally stores the vertices on a certain path.  It takes a space of T�2!� � T�!� in the worst case.  
Finally, we have the graph solution stored in its own data type.  It stores a stack of Vertex and a 

single integer.  Therefore the space complexity is T�2! ;  1�  �  T�!�. 
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Sum them together, it is clear that the space complexity of this algorithm is T�!�.  We do no 

need to consider the space recycling regarding the collections described in the previous paragraph 

because there is no higher term space consuming components.  The summation would be T�!� with 
a constant factor, which does not change the final analysis.  Therefore, we present the space 

complexity of our algorithm is T�!�. 

4.3 Improvement attempts 
In complexity theory, exponential time is the computation time of a problem where the time to 

complete the computation, '���, is bounded by an exponential function of the problem size, �. In 
other words, as the size of the problem increases linearly, the time to solve the problem increases 

exponentially.  In Computer Scientists, people sometimes think of polynomial time as "fast", and 

anything running in greater than polynomial time as "slow"5. By this definition, exponential time 

would therefore be considered slow. 

If there is any possibility, we would like to improve the algorithm’s performance.  On the other 

hand, the improvement needs to be significant.  By lowering the lower term, for example the Jade-

Mesh-OuterLoop method would not change the exponential property.  In other words, we need to 

answer the question whether there is polynomial algorithm that solves our problem. 

As we discussed previously, for our problem, if we have more than enough battery capacity and 

moderately even priority values of the vertices, the problem turns into a problem of looking of the 

longest path.  Actually, without the second constraint regarding the priority value, we would also 

need to look for the longest path and compare the priority value of this path with other candidate 

solution paths. 

Since we addressed the worst case of this problem is the longest path problem, we can now 

answer our question—whether there is polynomial algorithm that solves our problem.  The longest 

path problem is known as a NP-complete problem in Computer Science6. 

Instance:     Graph ] � �!, .�. 

Solution:     Simple path in ], i.e., a sequence of distinct vertices #�, #�, ^ #-, 

                        such that for any 1 & � & ' 5 1, �#�, #�_�� 8 .. 
Measure:     Length of the path, i.e., the number of edges in the path. 

The definition of NP-complete problem tells us that there is no known efficient way to locate a 

solution of the problem.   The most notable characteristic of NP-complete problems is that no fast 

solution to them is known. That is, the time required to solve the problem using any currently 

known algorithm increases very quickly as the size of the problem grows. As a result, the time 

required to solve even moderately large versions of many of these problems easily reaches into the 

billions or trillions of years, using any amount of computing power available today7. 

                                                           
5 http://en.wikipedia.org/wiki/Cobham%27s_thesis 
6 http://www.nada.kth.se/~viggo/wwwcompendium/node114.html).   
7 http://en.wikipedia.org/wiki/NP-complete#Formal_definition_of_NP-completeness 
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Therefore, at least the worst case in this problem does not have a polynomial solution.  We  are 

not likely to find an algorithm runs at a speed significantly faster than what we presented here in 

this paper. 

5 Conclusion 
This paper proposed a brute-force algorithm with a exponential run-time to solve the problem of 

maximizing the summation of priorities through a vertex-weighted, undirected mesh graph.  

Potentially, the algorithm presented in this paper can be used as an implementation of a Roomba 

optimization feature.  A simplified example was used to demonstrate the problem solving procedure.  

The paper provided a comprehensive problem formulation with its preliminaries, algorithm design, 

and the complexity analysis for the algorithm.  We proved that it is unlikely for us to find a 

polynomial algorithm that solves this problem because the worst exists in this problem can be 

converted into to a well-known NP-complete—the longest path problem. 


