
Preliminaries and Problem Formulation

Simplification 1—Roomba stores the complete map; Computation is done off-line

Simplification 2—Roomba does not switch between cleaning and traveling modes within one trip

Algorithm Design

Key idea:

Design a brute-force algorithm that checks all feasible paths when battery constraint allows.

Base Case 1: Dead end

Actions:

Step 1: Loop through all possible starting points.

Step 2: For each, try moving all possible directions.

Base Case 1: Dead end

Base Case 2: Battery exhausted. Can’t afford cleaning and moving back from the current vertex.

Pseudo-code

1 Graph input;

2 BooleanMatrix matrix;

3 int maxGoodness;

4 GraphSolution output;

5 Stack<Vertex> sequence;

JADE-MESH-OUTERLOOP(Graph graphInput)

6 input ← graphInput;

7 matrix ← initialize as the size of graphInput and populate with false;
8 maxGoodness ← the minimum integer;
9 output ← null;

10 sequence ← initialize as a new object;
11 for int i ← 0 to i ← graphInput.width; i++ {
12 for int j ← 0 to j ← graphInput.height; j++ {
13 JADE-MESH-RECURSION (i, j, 0,

graphInput.capacity – capacityToBase(i,j));
14 }

15 }
return

CAPACITYTOBASE(int x’, int y’)

1 return distance(input.base.x , input.base.y, x’, y’);

ISBATTERYEXHAUSTED(int x, int y, int capacity)

2 if capacityToBase(x, y) + input.consumption(x, y) + 1 >

capacity {

3 return true;

4 }

Helper methods that are needed:

15 }

16 return output;

JADE-MESH-RECURSION(int x, int y, int goodness, int capacity)

17 if isBlocked(x, y) = true or isBatteryExhausted(x, y, capacity) = true {

18 If output = null or goodness > maxGoodness {

19 maxGoodness ← goodness;

20 output ← new GraphSolution(sequence, goodness);
21 }

22 return;

23 }

24 sequence.push(new Vertex(x, y));

25 matrix.mark(x, y);

26 int newGoodness ← goodness + input.priority(x, y);
27 int newCapacity ← capacity – input.comsumption(x, y) – 1;
28 JADE-MESH-RECURSION(x – 1, y, newGoodness, newCapacity);

29 JADE-MESH-RECURSION(x + 1, y, newGoodness, newCapacity);

30 JADE-MESH-RECURSION(x, y – 1, newGoodness, newCapacity);

31 JADE-MESH-RECURSION(x, y + 1, newGoodness, newCapacity);

32 sequence.pop();

33 matrix.unmark(x, y);

4 }

5 return false;

ISBLOCKED(int x, int y)

6 if x < 0 or x <= matrix.width

or y < 0 or y >= matrix.height {

7 return true;

8 }

9 if x = input.base.x and y = input.base.y {

10 return true;

11 }

12 return matrix.isMarked(x, y);

Simplified Example

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2

c = 1

p = 5

Home base

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2

c = 1

p = 5

Home base

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2

c = 1

p = 5

Home base

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2
c = 1

p = 5

Home base

Starting

Starting

Starting

Path 1: D

total c = 5

total p = 2

Path 2: B

total c = 4

total p = 3

Path 3: C

total c = 6

total p = 5

Path c Consumption p Summation

D, C, B 9 10

B, C, D 9 10

C, B 7 8

B, C 7 8

D, C 8 7

C, D 8 7

C 6 5

B 4 3

D 5 2

All candidate solution is battery allows:

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2

c = 1

p = 5

Home base

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2

c = 1

p = 5

Home base

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2
c = 1

p = 5

Home base

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2
c = 1

p = 5

Home base

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2

c = 1

p = 5

Home base

Starting

Starting

Starting Starting

Starting

c = 0

p = 0

c = 1

p = 3

c = 2

p = 2

c = 1

p = 5

Home base Starting

Path 4: D, C

total c = 8

total p = 7

Path 5: B, C

total c = 7

total p = 8

Path 6: C, B

total c = 7

total p = 8

Path 7: C, D

total c = 8

total p = 7

Path 8: D, C, B

total c = 9

total p = 10

Path 9: B, C, D

total c = 9

total p = 10

Final solutions for specific battery input:

Battery Capacity Final Solution

C >= 9 D, C, B or B, C, D

C = 7, 8 B, C or C, B

C = 6 C

C = 4, 5 B

C < 4 null

Complexity Analysis

Time Complexity

Jade-Mesh-OuterLoop Method:

Jade-Mesh-Recursion Method:

Overall Time Complexity: Overall Time Complexity:

Space Complexity

Improvement Attempt

The worst case of a particular map:

The worst case scenario:

Battery capacity is sufficient and does not act like a constraint in the problem.

Can be addressed as a variant of the Longest Path Problem—a know NP-Complete .

Conclusion:

It is unlikely for us to find a polynomial algorithm for this problem set.

