Jade Yu Cheng

ICS 311
Homework 3
Sep 4, 2008

Question for lecture 4

Problem 4-1 on p. 85

Recurrence examples

Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.
a. $\quad T(n)=2 T\left(\frac{n}{2}\right)+n^{3}$.

Answer: We guess that the solution is $T(n)=\Theta\left(n^{3}\right)$. Our method is to prove that $T(n) \leq c n^{3}$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+n^{3} \\
& =2 c \cdot\left(\frac{n}{2}\right)^{3}+n^{3} \\
& =\frac{1}{4} c n^{3}+n^{3} \\
& =c n^{3}-\left(\frac{3}{4} c-1\right) \cdot n^{3} \\
& \leq c n^{3}
\end{aligned}
$$

where the last step holds for $c \geq \frac{4}{3}$ and $n>0$.
b. $T(n)=T\left(\frac{9 n}{10}\right)+n$.

Answer: We guess that the solution is $T(n)=\Theta(n)$. Our method is to prove that $T(n) \leq c n$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =T\left(\frac{9 n}{10}\right)+n \\
& \leq \frac{9}{10} c n+n \\
& =c n-\left(\frac{1}{10} c-1\right) \cdot n \\
& \leq c n
\end{aligned}
$$

where the last step holds for $c \geq 10$ and $n>0$.
c. $\quad T(n)=16 T\left(\frac{n}{4}\right)+n^{2}$.

Answer: We guess that the solution is $T(n)=\Theta\left(n^{2} \lg n\right)$. Our method is to prove that $T(n) \leq c n^{2} \lg n$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =16 T\left(\frac{n}{4}\right)+n^{2} \\
& \leq \frac{1}{16} c \cdot\left(\frac{n}{4}\right)^{2} \cdot \lg \frac{n}{4}+n^{2} \\
& =c n^{2} \cdot(\lg n-\lg 4)+n^{2} \\
& =c n^{2} \lg n-(c \lg 4-1) \cdot n^{2} \\
& \leq c n^{2} \lg n
\end{aligned}
$$

where the last step holds for $(c \lg 4-1) \cdot n^{2} \geq 0$. For example, $c \geq \frac{1}{\lg 4}$ and $n>0$.
d. $T(n)=7 T\left(\frac{n}{3}\right)+n^{2}$.

Answer: We guess that the solution is $T(n)=\Theta\left(n^{2}\right)$. Our method is to prove that $T(n) \leq c n^{2}$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =7 T\left(\frac{n}{3}\right)+n^{2} \\
& \leq 7 c \cdot\left(\frac{n}{3}\right)^{2}+n^{2} \\
& =c n^{2}-\left(\frac{2}{9} c-1\right) \cdot n^{2} \\
& \leq c n^{2}
\end{aligned}
$$

where the last step holds for $\left(\frac{2}{9} c-1\right) \cdot n^{2} \geq 0$. For example, $c \geq \frac{9}{2}$ and $n>0$.
e. $\quad T(n)=7 T\left(\frac{n}{2}\right)+n^{2}$.

Answer: We guess that the solution is $T(n)=\Theta\left(n^{\log _{2} 7}\right)$. Our method is to prove that $T(n) \leq c_{1} n^{\log _{2} 7}-c_{2} n^{2}$ for appropriate choices of the constants $c_{1}>0$ and $c_{2}>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =7 T\left(\frac{n}{2}\right)+n^{2} \\
& \leq 7 \cdot\left[c_{1} \cdot\left(\frac{n}{2}\right)^{\log _{2} 7}-c_{2} \cdot\left(\frac{n}{2}\right)^{2}\right]+n^{2} \\
& =c_{1} n^{\log _{2} 7}-c_{2} n^{2}-\left(\frac{3}{4} c_{2}-1\right) \cdot n^{2} \\
& \leq c_{1} n^{\log _{2} 7}-c_{2} n^{2}
\end{aligned}
$$

where the last step holds for $\left(\frac{3}{4} c_{2}-1\right) \cdot n^{2} \geq 0$. For example, $c_{2} \geq \frac{4}{3}$ and $n>0$.
f. $\quad T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}$.

Answer: We guess that the solution is $T(n)=\Theta\left(n^{1 / 2} \lg n\right)$. Our method is to prove that $T(n) \leq c n^{1 / 2} \lg n$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{4}\right)+n^{1 / 2} \\
& \leq 2 c \cdot\left(\frac{n}{4}\right)^{1 / 2} \cdot \lg \frac{n}{4}+n^{1 / 2} \\
& =c n^{1 / 2} \lg n-\left(c n^{1 / 2} \lg 4-n^{1 / 2}\right) \\
& \leq c n^{1 / 2} \lg n
\end{aligned}
$$

where the last step holds for $(c \lg 4-1) \cdot n^{1 / 2} \geq 0$. For example, $c \geq \frac{1}{\lg 4}$ and $n>0$.
g. $T(n)=T(n-1)+n$.

Answer: In this case, the induction method does not work, so instead we apply the recursion tree method to solve this recurrence.

$$
\begin{array}{|cccc}
\uparrow & \left.\begin{array}{ccc}
T(n) & \Rightarrow & n \\
\mid & & \\
T(n-1) & \Rightarrow & n-1 \\
\mid & & \\
n & T(n-2) & \Rightarrow \\
\mid & n-2 \\
\vdots & & \vdots \\
T(1) & \Rightarrow & 1
\end{array}\right\}=1+2+\cdots+n=\sum_{i=1}^{n} i=\Theta\left(n^{2}\right),
\end{array}
$$

The solution is $T(n)=\Theta\left(n^{2}\right)$.
h. $T(n)=T(\sqrt{n})+1$.

Answer: We guess that the solution is $T(n)=\Theta(\lg n)$. Our method is to prove that $T(n) \leq c \lg n$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =T\left(n^{1 / 2}\right)+1 \\
& \leq c \lg n^{1 / 2}+1 \\
& =\frac{1}{2} c \lg n+1 \\
& =c \lg n-\left(\frac{1}{2} c \lg n-1\right) \\
& \leq c \lg n
\end{aligned}
$$

where the last step holds for $\frac{1}{2} c \lg n-1 \geq 0$. For example, c and n such that $c \lg n \geq 2$.

