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Question for lecture 4 

 

 

Problem 4-1 on p. 85 

 

Recurrence examples 

Give asymptotic upper and lower bounds for ( )nT  in each of the following 

recurrences.  Assume that ( )nT  is constant for 2≤n .  Make your bounds as tight as 

possible, and justify your answers. 
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Answer:  We guess that the solution is ( ) ( )3nnT Θ= .  Our method is to prove 

that ( ) 3cnnT ≤  for an appropriate choice of the constant 0>c .  Substituting 

into the recurrence yields 
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where the last step holds for 
3

4≥c  and 0>n . 
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n
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Answer:  We guess that the solution is ( ) ( )nnT Θ= .  Our method is to prove 

that ( ) cnnT ≤  for an appropriate choice of the constant 0>c .  Substituting 

into the recurrence yields 
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where the last step holds for 10≥c  and 0>n . 

 

c. ( ) 2
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Answer:  We guess that the solution is ( ) ( )nnnT lg2Θ= .  Our method is to 

prove that ( ) ncnnT lg2≤  for an appropriate choice of the constant 0>c .  

Substituting into the recurrence yields 
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where the last step holds for ( ) 014lg 2 ≥⋅− nc .  For example, 
4lg

1≥c  and 

0>n . 

 



d. ( ) 2
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Answer:  We guess that the solution is ( ) ( )2nnT Θ= .  Our method is to prove 

that ( ) 2cnnT ≤  for an appropriate choice of the constant 0>c .  Substituting 

into the recurrence yields 
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where the last step holds for 01
9

2 2 ≥⋅






 − nc .  For example, 
2

9≥c  and 0>n . 

 

e. ( ) 2
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Answer:  We guess that the solution is ( ) ( )7log2nnT Θ= .  Our method is to 

prove that ( ) 2
2

7log
1

2 ncncnT −≤  for appropriate choices of the constants 01 >c  

and 02 >c .  Substituting into the recurrence yields 
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where the last step holds for 01
4
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 − nc .  For example, 
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Answer:  We guess that the solution is ( ) ( )nnnT lg2/1Θ= .  Our method is to 

prove that ( ) ncnnT lg2/1≤  for an appropriate choice of the constant 0>c .  

Substituting into the recurrence yields 
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where the last step holds for ( ) 014lg 2/1 ≥⋅− nc .  For example, 
4lg

1≥c  and 

0>n . 

 

g. ( ) ( ) nnTnT +−= 1 . 

Answer:  In this case, the induction method does not work, so instead we 

apply the recursion tree method to solve this recurrence. 
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The solution is ( ) ( )2nnT Θ= . 

 



h. ( ) ( ) 1+= nTnT . 

Answer:  We guess that the solution is ( ) ( )nnT lgΘ= .  Our method is to prove 

that ( ) ncnT lg≤  for an appropriate choice of the constant 0>c .  Substituting 

into the recurrence yields 
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where the last step holds for 01lg
2
1 ≥−nc .  For example, c  and n  such that 

2lg ≥nc . 

 

 


