Jade Yu Cheng

ICS 311
Homework 4
Sep 9, 2008

Question for lecture 5

Problem 4-4 on p. 86

Recurrence examples

I gave solutions to most of the sub problems. But there are three of them to which the master method doesn't apply. Recursion Tree didn't give me a clear enough answer, either. How do I solve sub problems b, d and e?

Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.
a. $\quad T(n)=3 T\left(\frac{n}{2}\right)+n \lg n$.

Answer: We guess that the solution is $T(n)=\Theta\left(n^{\lg _{2} 3}\right)$. Our method is to prove that $T(n) \leq c_{1} n^{\lg _{2} 3}-c_{2} n \lg n$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =3 T\left(\frac{n}{2}\right)+n \lg n \\
& \leq 3 c_{1} \cdot\left(\frac{n}{2}\right)^{\lg _{2} 3}-3 c_{2} \cdot\left(\frac{n}{2}\right) \cdot \lg \left(\frac{n}{2}\right)+n \lg n \\
& =c_{1} n^{\lg _{2} 3}-\frac{3}{2} c_{2} n \cdot(\lg n-\lg 2)+n \lg n \\
& =c_{1} n^{\lg _{2} 3}-c_{2} n \lg n-\left(\frac{1}{2} c_{2} n \lg n-\frac{3}{2} c_{2} n \lg 2-n \lg n\right) \\
& =c_{1} n^{\lg _{2} 3}-c_{2} n \lg n-n\left[\lg n \cdot\left(\frac{1}{2} c_{2}-1\right)-\frac{3}{2} c_{2} \lg 2\right] \\
& \leq c_{1} n^{\lg _{2} 3}-c_{2} n \lg n
\end{aligned}
$$

where the last step holds for $\lg n \cdot\left(\frac{1}{2} c_{2}-1\right)-\frac{3}{2} c_{2} \lg 2>0$ e.g, $c_{2}=8, n=2^{4}+1$.
b. $T(n)=5 T\left(\frac{n}{5}\right)+\frac{n}{\lg n}$.

Answer: ?

c. $T(n)=4 T\left(\frac{n}{2}\right)+n^{2} \sqrt{n}$.

Answer: We guess that the solution is $T(n)=\Theta\left(n^{2} \sqrt{n}\right)$. Our method is to prove that $T(n) \leq c n^{2} \sqrt{n}$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =4 T\left(\frac{n}{2}\right)+n^{2} \sqrt{n} \\
& \leq c n^{2} \sqrt{\frac{n}{2}}+n^{2} \sqrt{n} \\
& =c n^{2} \frac{\sqrt{2 n}}{2}+n^{2} \sqrt{n} \\
& =c n^{2} \sqrt{n}-\left(\frac{2-\sqrt{2}}{2} c n^{2} \sqrt{n}-n^{2} \sqrt{n}\right) \\
& =c n^{2} \sqrt{n}-n^{2} \sqrt{n} \cdot\left(\frac{2-\sqrt{2}}{2} c-1\right) \\
& \leq c n^{2} \sqrt{n}
\end{aligned}
$$

where the last step holds for $\frac{2-\sqrt{2}}{2} c-1>0$. e.g, $c=4$ and $n>0$.
d. $\quad T(n)=3 T\left(\frac{n}{3}+5\right)+\frac{n}{2}$.

Answer: We guess that the solution is $T(n)=\Theta(n \lg n)$.?
e. $T(n)=2 T\left(\frac{n}{2}\right)+\frac{n}{\lg n}$.

Answer: ?
f. $\quad T(n)=T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+n$.

Answer: We guess that the solution is $T(n)=\Theta(n)$. Our method is to prove that $T(n) \leq c n$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+T\left(\frac{n}{4}\right)+T\left(\frac{n}{8}\right)+n \\
& \leq \frac{c n}{2}+\frac{c n}{4}+\frac{c n}{8}+n \\
& =c n-n\left(\frac{1}{8} c-1\right) \\
& \leq c n
\end{aligned}
$$

where the last step holds for $\frac{1}{8} c-1>0$. e.g, $c>8$ and $n>0$.
g. $\quad T(n)=T(n-1)+\frac{1}{n}$.

Answer: In this case, the master method does not work, we apply the recursion tree method to solve this recurrence.

$$
\begin{aligned}
& \left.\uparrow \begin{array}{ccc}
T(n) & \Rightarrow & 1 / n \\
\mid & & \\
T(n-1) & \Rightarrow & 1 /(n-1) \\
\mid & & \\
n & T(n-2) & \Rightarrow \\
\mid & 1 /(n-2) \\
\vdots & & \vdots \\
T(1) & \Rightarrow & 1
\end{array}\right\}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\sum_{i=1}^{n} \frac{1}{i}=\Theta(\lg n) .
\end{aligned}
$$

Based on the formula: $\sum_{i=1}^{n} \frac{1}{i}=\Theta(\lg n)$. Therefore the solution is $T(n)=\Theta(\lg n)$.
h. $T(n)=T(n-1)+\lg n$.

Answer: In this case, the master method does not work, we apply the recursion tree method to solve this recurrence.

$$
\begin{aligned}
& \left.\uparrow \begin{array}{ccc}
T(n) & \Rightarrow & \lg n \\
\mid & & \\
T(n-1) & \Rightarrow & \lg (n-1) \\
\mid & & \\
n \\
T(n-2) & \Rightarrow & \lg (n-2) \\
\mid & & \vdots \\
\vdots & & \vdots \\
T(1) & \Rightarrow & \lg 1
\end{array}\right\}=\lg 1+\lg 2+\lg 3+\cdots+\lg n=\sum_{i=1}^{n} \lg i=\Theta(n \lg n) .
\end{aligned}
$$

Based on the formula: $\sum_{i=1}^{n} \lg (i)^{c}=\Theta\left[n \lg (n)^{c}\right]$ for nonnegative. Therefore the solution is $T(n)=\Theta(n \lg n)$.
i. $\quad T(n)=T(n-2)+2 \lg n$.

Answer: We guess that the solution is $T(n)=\Theta(n \lg n)$. Our method is to prove that $T(n)<c n \lg n$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =T(n-2)+2 \lg n \\
& \leq c(n-2) \lg (n-2)+2 \lg n \\
& =(c n-2 c) \lg n+(c n-2 c) \lg (n-2)-(c n-2 c) \lg n+2 \lg n \\
& =c n \lg n-[c n \lg n+2 \lg n-c n \lg (n-2)+2 c \lg (n-2)] \\
& =c n \lg n-\left[c n \lg \frac{n}{n-2}+2 \lg n \cdot(n-2)^{c}\right] \\
& \leq c n \lg n
\end{aligned}
$$

where the last step holds for $c n \lg \frac{n}{n-2}+2 \lg n \cdot(n-2)^{c}>0$. e.g, $n>2$.
j. $\quad T(n)=\sqrt{n} T(\sqrt{n})$.

Answer: We guess that the solution is $T(n)=\Theta(n \lg n)$. Our method is to prove that $T(n)<c n \lg n$ for an appropriate choice of the constant $c>0$. Substituting into the recurrence yields

$$
\begin{aligned}
T(n) & =\sqrt{n} T(\sqrt{n}) \\
& \leq c \sqrt{n} \cdot \sqrt{n} \cdot \lg \sqrt{n}+n \\
& =\frac{1}{2} c n \lg n+n \\
& =c n \lg n-\left(\frac{1}{2} c n \lg n-n\right) \\
& \leq c n \lg n
\end{aligned}
$$

where the last step holds for $\frac{1}{2} c \lg n-1>0$.

