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Question for lecture 5 

 

 

Problem 4-4 on p. 86 

 

Recurrence examples 

I gave solutions to most of the sub problems.  But there are three of them to which 

the master method doesn’t apply.  Recursion Tree didn’t give me a clear enough 

answer, either.  How do I solve sub problems b, d and e? 

 

Give asymptotic upper and lower bounds for ( )nT  in each of the following 

recurrences.  Assume that ( )nT  is constant for 2≤n .  Make your bounds as tight as 

possible, and justify your answers. 
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Answer:  We guess that the solution is ( ) ( )3lg2nnT Θ= .  Our method is to 

prove that ( ) nncncnT lg2
3lg

1
2 −≤  for an appropriate choice of the constant 

0>c .  Substituting into the recurrence yields 
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where the last step holds for 02lg
2

3
1

2

1
lg 22 >−







 −⋅ ccn  e.g, 82 =c , 124 +=n . 
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Answer:  ? 
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Answer:  We guess that the solution is ( ) ( )nnnT 2Θ= .  Our method is to 

prove that ( ) ncnnT 2≤  for an appropriate choice of the constant 0>c .  

Substituting into the recurrence yields 
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where the last step holds for 01
2

22 >−−
c .  e.g, 4=c  and 0>n . 
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Answer:  We guess that the solution is ( ) ( )nnnT lgΘ= . ? 
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Answer:  ? 
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Answer:  We guess that the solution is ( ) ( )nnT Θ= .  Our method is to prove 

that ( ) cnnT ≤  for an appropriate choice of the constant 0>c .  Substituting 

into the recurrence yields 
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where the last step holds for 01
8

1 >−c .  e.g, 8>c  and 0>n . 

 

g. ( ) ( )
n
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1

1 +−= . 

Answer:  In this case, the master method does not work, we apply the 

recursion tree method to solve this recurrence. 
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Based on the formula: ( )∑
=

Θ=
n

i

n
i1

lg
1

.  Therefore the solution is ( ) ( )nnT lgΘ= . 

 

h. ( ) ( ) nnTnT lg1 +−= . 

Answer:  In this case, the master method does not work, we apply the 

recursion tree method to solve this recurrence. 
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Based on the formula: ( ) ( )[ ]∑
=

Θ=
n

i

cc nni
1

lglg  for nonnegative.  Therefore the 

solution is ( ) ( )nnnT lgΘ= . 

 

i. ( ) ( ) nnTnT lg22 +−= . 

Answer:  We guess that the solution is ( ) ( )nnnT lgΘ= .  Our method is to 

prove that ( ) ncnnT lg<  for an appropriate choice of the constant 0>c .  

Substituting into the recurrence yields 
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where the last step holds for ( ) 02lg2
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j. ( ) ( )nTnnT = . 

Answer:  We guess that the solution is ( ) ( )nnnT lgΘ= .  Our method is to 

prove that ( ) ncnnT lg<  for an appropriate choice of the constant 0>c .  

Substituting into the recurrence yields 
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where the last step holds for 01lg
2

1 >−nc .   

 

 


