
Jade Yu Cheng

ICS 311

Homework 6

Sep 15, 2008

Question for lecture 7

Problem 16-1 on p. 402

Coin changing

Consider the problem of making change for n cents using the fewest number of coins.

Assume that each coin’s value is an integer.

a. Describe a greedy algorithm to make change consisting of quarters, dimes, nickels,

and pennies. Prove that your algorithm yields an optimal solution.

Answer: The algorithm for solving this real-life problem is exactly what we do in

real life, which is to always use the greatest value coins for the existing amount

and to use as many of those coins as possible without exceeding the existing

amount. After deducting this sum from the existing amount, we use the

remainder as the new existing amount and repeat the process.

This is a greedy algorithm. We apply the best solution for the current step

without regard for the optimal solution. This is usually easy to understand and

simple to implement. In the case of American currency, the greedy algorithm

provides the best solution because locally optimal solutions lead to globally

optimal solution as well.

Proof:

1. Let’s consider pennies and nickels. At most, I can use 4 pennies because any

number larger than 4 pennies would be replaced by at least 1 nickel. This

operation would reduce the total coin number by 4. In other words, when the

remainder is greater than 5 and I’m allowed to use only pennies and nickels, I

would use as many nickels as possible before considering pennies.

2. Let’s now consider pennies, nickels, and dimes. At most, I can use 1 nickel

because any number larger than 2 nickels would be replaced by at least 1 dime.

This operation would reduce the total coin number by 1. In other words,

when the remainder is greater than 10 and I’m allowed to use only pennies,

nickels, and dimes, I would use as many dimes as possible before considering

nickels and pennies.

3. Now, let’s consider pennies, nickels, dimes, and quarters. At most, I can use 2

dimes because any number larger than 3 dimes would be replaced by 1 quarter

plus 1 nickel. This operation would reduce the total coin number by 1. In

other words, when the remainder is greater than 30, I would use as many

combinations of quarters and nickels as possible. Then, of course, the actual

amount of nickels used would fall into the second case. They would be

replaced by dimes if possible. So, the solution is to use as many quarters as

possible when the remainder is greater than 30.

4. For the gap between 25 and 30, based on the first two arguments, I would use

2 dimes, 1 nickel, and 25−n pennies. Obviously, I would use 1 quarter to

replace the 2 dimes and 1 nickel. This operation would reduce the total coin

number by 2.

Therefore, the greedy algorithm provides the optimal solution for this set of coin

denomination.

b. Suppose that the available coins are in the denominations that are powers of c ,

i.e., the denominations are kcccc ,...,,, 210 for some integers 1>c and 1≥k . Show

that the greedy algorithm always yields an optimal solution.

Answer: Proof:

1. The reasoning is very similar to that of the previous question. Let’s consider

the first two types of coins in this set, pennies and coins that are worth c

cents each, which we will call ĉ . At most, we can use 1−c pennies because

any number larger than c pennies would be replaced by at least one ĉ coin.

This operation would reduce the total coin number by 1−c . In other words,

when the remainder is greater than c and I’m allowed to use only pennies and

ĉ coins, I would use as many ĉ coins before considering pennies.

2. The same thoughts apply for larger coins. Let’s consider 1ˆ −nc and nĉ coins. At

most, we can use 1−c 1ˆ −nc coins. Because any number larger than nc would

be replaced by at least one nĉ coin. This operation would reduce the total coin

number by 1−c . In other words, when the remainder is greater than nc and

I’m allowed to use only coins that are worth less than nĉ , I would use as many
nĉ coins as possible before considering other coins.

3. Combining the first two arguments, the greedy algorithm applies to all the

levels of this particular coin set denomination.

c. Give a set of coin denominations for which the greedy algorithm does not yield an

optimal solution. Your set should include a penny so that there is a solution for

every value of n .

Answer: Let’s consider the set of coins { } 4 3, 1, . If we try to make change for 6

cents, the solution from the greedy algorithm would yield 61241 =×+× (cents).

The total amount of coins used in the solution would be 321 =+ (coins).

A better solution, however, would be to use 632 =× (cents). The total amount of

coins used in this optimal solution would be 2 (coins).

d. Give an ()nkO -time algorithm that makes change for any set of k different coin

denominations, assuming that one of the coins is a penny.

Answer: The greedy algorithm always provides a solution but doesn’t guarantee

the smallest number of coins used. The greedy algorithm takes ()nkO for any

kind of coin set denomination, where k is the number of different coins in a

particular set. The algorithm is implemented below in Java:

 /**
 * Makes change using a recursive Greedy algorithm.
 *
 * @param amount
 * The amount of change to make.
 * @param coins
 * The sorted set of coins, ordered from smallest to largest.
 * @return The number of coins used to make the change.
 */
 int makeChangeGreedyStyle(int amount, int[] coins) {

 // Check if there is no more change to make.
 if (amount == 0) {
 System. out.println("");
 return 0;
 }

 // Loop over the change in order of greatest to sma llest.
 for (int i = coins. length ; i > 0; i--) {
 int coin = coins[i - 1];

 // If the next largest coin is found, print out its value.
 if (amount >= coin) {
 System. out.print(coin + " ");
 return 1 + makeChangeGreedyStyle(amount - coin, coins);
 }
 }

 // Arriving here means it's impossible to make chan ge
 // using this greedy algorithm, this amount of chan ge,
 // and this set of coins.
 System. out.print("Cannot make change; ");
 System. out.println("cents remaining: " + amount);
 return 0;
 }

