Jade Yu Cheng

ICS 311
Homework 14
Oct 30, 2008

Question for lecture 18

Problem 30-1 on p. 844

Divide-and-conquer multiplication

a. Show how to multiply two linear polynomials $a x+b$ and $c x+d$ using only three multiplications.

Answer: First let's consider the naïve method of multiplying polynomials. We would do the operations as follow:

$$
\begin{aligned}
& (a \cdot x+b)(c \cdot x+d) \\
& =a c \cdot x^{2}+(b c+a d) \cdot x+b d
\end{aligned}
$$

Multiplication \#: 4
Operations: $a c, b c, a d, b d$
Now, let's consider the modified method of doing the same polynomial multiplication:

$$
\begin{aligned}
& (a \cdot x+b)(c \cdot x+d) \\
& =a c \cdot x^{2}+[(a+b)(c+d)-a c-d b] \cdot x+b d \\
& =a c \cdot x^{2}+(b c+a d) \cdot x+b d
\end{aligned}
$$

Multiplication \#: 3
Operations: $(a+b)(c+d), a c, b d$
This way we converted the calculation of looking for the coefficients for the output polynomial into three times of multiplications and a bunch of summations and subtraction. As we know the summation and subtraction operations are considerably cheaper than multiplications. For polynomial summation or
subtraction, it takes $O(n)$, which would always be the lower term in comparison with polynomial multiplication. Let's write the equation above more clear:

If

$$
\begin{gathered}
A=(a+b)(c+d) \\
B=a c \\
C=a d \\
(a \cdot x+b)(c \cdot x+d) \\
=B \cdot x^{2}+(A-B-C) \cdot x+C
\end{gathered}
$$

Multiplication operations: A, B, C
b. Give two divide-and-conquer algorithms for multiplying two polynomials of degree-bound n that run in time $O\left(n^{\lg 3}\right)$ The first algorithm should divide the input polynomial coefficients into a high half and a low half, and the second algorithm should divide them according to whether their index is odd or even.

Answer: First let's consider the naïve method of multiplying polynomials. We would do the operations as follow:

$$
\begin{aligned}
& A(x)=a_{1} \cdot x^{n-1}+a_{2} \cdot x^{n-2}+\cdots+a_{n-1} \cdot x+a_{n} \\
& B(x)=b_{1} \cdot x^{n-1}+b_{2} \cdot x^{n-2}+\cdots+b_{n-1} \cdot x+b_{n} \\
& A(x) \cdot B(x)=\left(a_{1} \cdot x^{n-1}+a_{2} \cdot x^{n-2}+\cdots+a_{n-1} \cdot x+a_{n}\right) \cdot\left(b_{1} \cdot x^{n-1}+b_{2} \cdot x^{n-2}+\cdots+b_{n-1} \cdot x+b_{n}\right)
\end{aligned}
$$

Multiplication \#: n^{2}
Operations: $a_{i} \cdot b_{j}$ while $i, j=\{1,2, \cdots n\}$

Algorithm 1:

Now, let's consider the modified method of doing the same polynomial multiplication:

$$
\begin{aligned}
& A(x) \cdot B(x)=\left(a_{1} \cdot x^{n-1}+a_{2} \cdot x^{n-2}+\cdots+a_{n-1} \cdot x+a_{n}\right) \cdot\left(b_{1} \cdot x^{n-1}+b_{2} \cdot x^{n-2}+\cdots+b_{n-1} \cdot x+b_{n}\right) \\
& =\left[\left(a_{1} \cdot x^{n-1}+a_{2} \cdot x^{n-2}+\cdots+a_{n / 2} \cdot x^{n / 2}\right)+\left(a_{n / 2+1} \cdot x^{n / 2-1}+a_{n / 2+2} \cdot x^{n / 2-2}+\cdots+a_{n}\right)\right] \times \\
& {\left[\left(b_{1} \cdot x^{n-1}+b_{2} \cdot x^{n-2}+\cdots+b_{n / 2} \cdot x^{n / 2}\right)+\left(b_{n / 2+1} \cdot x^{n / 2-1}+b_{n / 2+2} \cdot x^{n / 2-2}+\cdots+b_{n}\right)\right]} \\
& =\left[x^{n / 2} \cdot\left(a_{1} \cdot x^{n / 2-1}+a_{2} \cdot x^{n / 2-2}+\cdots+a_{n / 2}\right)+\left(a_{n / 2+1} \cdot x^{n / 2-1}+a_{n / 2+2} \cdot x^{n / 2-2}+\cdots+a_{n}\right)\right] \times \\
& {\left[x^{n / 2} \cdot\left(b_{1} \cdot x^{n / 2-1}+b_{2} \cdot x^{n / 2-2}+\cdots+b_{n / 2}\right)+\left(b_{n / 2+1} \cdot x^{n / 2-1}+b_{n / 2+2} \cdot x^{n / 2-2}+\cdots+b_{n}\right)\right]}
\end{aligned}
$$

If

$$
\begin{aligned}
& f_{1}(x)=a_{1} \cdot x^{n / 2-1}+a_{2} \cdot x^{n / 2-2}+\cdots+a_{n / 2} \\
& f_{2}(x)=a_{n / 2+1} \cdot x^{n / 2-1}+a_{n / 2+2} \cdot x^{n / 2-2}+\cdots+a_{n} \\
& f_{3}(x)=b_{1} \cdot x^{n / 2-1}+b_{2} \cdot x^{n / 2-2}+\cdots+b_{n / 2} \\
& f_{4}(x)=b_{n / 2+1} \cdot x^{n / 2-1}+b_{n / 2+2} \cdot x^{n / 2-2}+\cdots+b_{n}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A(x)=x^{n / 2} \cdot f_{1}(x)+f_{2}(x) \\
& B(x)=x^{n / 2} \cdot f_{3}(x)+f_{4}(x)
\end{aligned}
$$

The objective function: $\quad A(x) \cdot B(x)=\left[x^{n / 2} \cdot f_{1}(x)+f_{2}(x)\right] \times\left[x^{n / 2} \cdot f_{3}(x)+f_{4}(x)\right]$
By looking at the last equation, if we consider $f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x)$ as coefficients, we see that the problem is turned into a $(a \cdot x+b)(c \cdot x+d)$ form, which was discussed in part 1 of this paper. The conclusion was polynomial multiplication of this from can be accomplished with 3 operations.

If we look at the form of $A(x)$ and $B(x)$, we divide the problem by half of it size and added a summation operation. As we discussed, the polynomial summation and subtraction takes $O(n)$ time to compute. Therefore, we have a recurrence solution for our problem:

$$
T[n]=3 \cdot T\left[\frac{n}{2}\right]+O(n)
$$

We apply master method to solve this recurrence. We obtain the final run time of the polynomial multiplication using this method. Since $O\left(n^{\lg _{2} 3}\right)$ is higher term than $O(n)$. Algorithm run in $O\left(n^{\lg _{2} 3}\right)$ time

Algorithm 2:

Let's divide the objective function in a different way. Instead of a higher half and a lower half, we can also do odd index half and the even index half:

$$
\begin{aligned}
& A(x) \cdot B(x)=\left(a_{1} \cdot x^{n-1}+a_{2} \cdot x^{n-2}+\cdots+a_{n-1} \cdot x+a_{n}\right) \cdot\left(b_{1} \cdot x^{n-1}+b_{2} \cdot x^{n-2}+\cdots+b_{n-1} \cdot x+b_{n}\right) \\
& =\left[\left(a_{1} \cdot x^{n-1}+a_{3} \cdot x^{n-3}+\cdots+a_{n-1} \cdot x\right)+\left(a_{2} \cdot x^{n-2}+a_{4} \cdot x^{n-4}+\cdots+a_{n}\right)\right] \times \\
& {\left[\left(b_{1} \cdot x^{n-1}+b_{3} \cdot x^{n-3}+\cdots+b_{n-1} \cdot x\right)+\left(b_{2} \cdot x^{n-2}+b_{4} \cdot x^{n-4}+\cdots+b_{n}\right)\right]} \\
& =\left[x \cdot\left(a_{1} \cdot x^{n-2}+a_{3} \cdot x^{n-4}+\cdots+a_{n-1}\right)+\left(a_{2} \cdot x^{n-2}+a_{4} \cdot x^{n-4}+\cdots+a_{n}\right)\right] \times \\
& {\left[x \cdot\left(b_{1} \cdot x^{n-2}+b_{3} \cdot x^{n-4}+\cdots+b_{n-1}\right)+\left(b_{2} \cdot x^{n-2}+b_{4} \cdot x^{n-4}+\cdots+b_{n}\right)\right]}
\end{aligned}
$$

If

$$
\begin{aligned}
& g_{1}(x)=a_{1} \cdot x^{n-2}+a_{3} \cdot x^{n-4}+\cdots+a_{n-1} \\
& g_{2}(x)=a_{2} \cdot x^{n-2}+a_{4} \cdot x^{n-4}+\cdots+a_{n} \\
& g_{3}(x)=b_{1} \cdot x^{n-2}+b_{3} \cdot x^{n-4}+\cdots+b_{n-1} \\
& g_{4}(x)=b_{2} \cdot x^{n-2}+b_{4} \cdot x^{n-4}+\cdots+b_{n}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A(x)=x \cdot g_{1}(x)+g_{2}(x) \\
& B(x)=x \cdot g_{3}(x)+g_{4}(x)
\end{aligned}
$$

The objective function: $\quad A(x) \cdot B(x)=\left[x \cdot g_{1}(x)+g_{2}(x)\right] \times\left[x \cdot g_{3}(x)+g_{4}(x)\right]$
As we see, we again converted the objective function into a $(a \cdot x+b)(c \cdot x+d)$ form. The run time analysis for this algorithm, therefore, is also $O\left(n^{\lg _{2} 3}\right)$
c. Show that two n-bit integers can be multiplied in $O\left(n^{\lg _{2} 3}\right)$ steps, where each step operates on at most a constant number of 1-bit values.

Answer: We have two n -bit integers, $k_{n} k_{n-1} \cdots k_{2} k_{1}$ and $l_{n} l_{n-1} \cdots l_{2} l_{1}$, where $0 \leq k_{i} \leq 10$ and $0 \leq l_{i} \leq 10, k_{i}, l_{i}$ represent the number on every digit, $i=\{1,2, \cdots, n\}$. Obviously, we can also write them as:

$$
\begin{aligned}
& k_{n} \cdot 10^{n-1}+k_{n-1} \cdot 10^{n-2}+\cdots+k_{2} \cdot 10+k_{1} \\
& l_{n} \cdot 10^{n-1}+l_{n-1} \cdot 10^{n-2}+\cdots+l_{2} \cdot 10+l_{1}
\end{aligned}
$$

Therefore the multiplication of these two integers is turned into a polynomial multiplication problem. As we discussed above, by using divide-and-conquer, we designed two algorithms to solve the polynomial multiplication problem of degree-bound n with a run time $O\left(n^{\lg _{2} 3}\right)$. For each operation here, we only deal with either k or l. They are integers with only 1-bit values. Therefore we can multiplicity two n-bit integers with $O\left(n^{\lg _{2} 3}\right)$ steps, where each step operates on at most a constant number of 1-bit values.

