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Question for lecture 18 

 

 

Problem 30-1 on p. 844 

 

Divide-and-conquer multiplication 

a. Show how to multiply two linear polynomials �� �  � and �� �  � using only 

three multiplications. 

  

Answer:  First let’s consider the naïve method of multiplying polynomials.  We 

would do the operations as follow: 

 

( )( )
( ) bdxadbcxac

dxcbxa

+⋅++⋅=
+⋅+⋅

2
 

 

Multiplication #: 4 

Operations: bdadbcac ,,,  

 

Now, let’s consider the modified method of doing the same polynomial 

multiplication: 

 

( )( )
( )( )[ ]
( ) bdxadbcxac

bdxdbacdcbaxac

dxcbxa

+⋅++⋅=
+⋅−−+++⋅=

+⋅+⋅

2

2  

 

Multiplication #: 3 

Operations: ( )( )dcba ++ , bdac,  

 

This way we converted the calculation of looking for the coefficients for the 

output polynomial into three times of multiplications and a bunch of summations 

and subtraction.  As we know the summation and subtraction operations are 

considerably cheaper than multiplications.  For polynomial summation or 



subtraction, it takes �	
�, which would always be the lower term in comparison 

with polynomial multiplication.  Let’s write the equation above more clear: 
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Then                 
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( ) CxCBAxB

dxcbxa
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2
 

 

Multiplication operations: CBA ,,  

  

 

b. Give two divide-and-conquer algorithms for multiplying two polynomials of 

degree-bound n that run in time �	
�
�� The first algorithm should divide the 

input polynomial coefficients into a high half and a low half, and the second 

algorithm should divide them according to whether their index is odd or even. 

 

Answer:   First let’s consider the naïve method of multiplying polynomials.  We 

would do the operations as follow: 
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Multiplication #: 2n  

Operations: ji ba ⋅ while { }nji L,2,1, =  

 

 

Algorithm 1: 

 

Now, let’s consider the modified method of doing the same polynomial 

multiplication: 
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If                                                        
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Then                                                                                   
( ) ( ) ( )
( ) ( ) ( )xfxfxxB

xfxfxxA
n
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The objective function:   ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]xfxfxxfxfxxBxA nn
43

2/
21

2/ +⋅×+⋅=⋅  

 

By looking at the last equation, if we consider ( ) ( ) ( ) ( )xfxfxfxf 4321 ,,,  as 

coefficients, we see that the problem is turned into a ( )( )dxcbxa +⋅+⋅  form, 

which was discussed in part 1 of this paper. The conclusion was polynomial 

multiplication of this from can be accomplished with 3 operations. 

 

If we look at the form of ( )xA  and ( )xB , we divide the problem by half of it size 

and added a summation operation.  As we discussed, the polynomial summation 

and subtraction takes �	
� time to compute. Therefore, we have a recurrence 

solution for our problem: 

 

[ ] ( )nO
n

TnT +




⋅=
2

3  

 

We apply master method to solve this recurrence.  We obtain the final run time of 

the polynomial multiplication using this method.  Since ( )3lg2nO  is higher term 

than ( )nO .  Algorithm run in ( )3lg2nO  time 

 

Algorithm 2: 

 

Let’s divide the objective function in a different way.  Instead of a higher half and 

a lower half, we can also do odd index half and the even index half: 
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Then                                                                                       
( ) ( ) ( )
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xgxgxxA

43

21

+⋅=
+⋅=

 

 

The objective function:           ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]xgxgxxgxgxxBxA 4321 +⋅×+⋅=⋅  

 

As we see, we again converted the objective function into a ( )( )dxcbxa +⋅+⋅  form.  

The run time analysis for this algorithm, therefore, is also ( )3lg2nO  

 

 

c. Show that two 
-bit integers can be multiplied in ( )3lg2nO  steps, where each 

step operates on at most a constant number of 1-bit values. 

 

Answer: We have two n-bit integers, 121 kkkk nn L−  and 121 llll nn L− , where 

100 ≤≤ ik  and 100 ≤≤ il , ik , il  represent the number on every digit, 

{ }ni ,,2,1 L= .  Obviously, we can also write them as: 

 

12
2

1
1

12
2

1
1

101010

101010

llll

kkkk
n

n
n

n

n
n

n
n

+⋅++⋅+⋅

+⋅++⋅+⋅
−

−
−

−
−

−

L

L
 

 

Therefore the multiplication of these two integers is turned into a polynomial 

multiplication problem.  As we discussed above, by using divide-and-conquer, we 

designed two algorithms to solve the polynomial multiplication problem of 

degree-bound n with a run time  ( )3lg2nO .  For each operation here, we only deal 

with either k  or �.  They are integers with only 1-bit values.  Therefore we can 

multiplicity two 
-bit integers with  ( )3lg2nO  steps, where each step operates on at 

most a constant number of 1-bit values. 

 


