
Jade Yu Cheng

ICS 311

Homework 14

Oct 30, 2008

Question for lecture 18

Problem 30-1 on p. 844

Divide-and-conquer multiplication

a. Show how to multiply two linear polynomials �� � � and �� � � using only

three multiplications.

Answer: First let’s consider the naïve method of multiplying polynomials. We

would do the operations as follow:

()()
() bdxadbcxac

dxcbxa

+⋅++⋅=
+⋅+⋅

2

Multiplication #: 4

Operations: bdadbcac ,,,

Now, let’s consider the modified method of doing the same polynomial

multiplication:

()()
()()[]
() bdxadbcxac

bdxdbacdcbaxac

dxcbxa

+⋅++⋅=
+⋅−−+++⋅=

+⋅+⋅

2

2

Multiplication #: 3

Operations: ()()dcba ++ , bdac,

This way we converted the calculation of looking for the coefficients for the

output polynomial into three times of multiplications and a bunch of summations

and subtraction. As we know the summation and subtraction operations are

considerably cheaper than multiplications. For polynomial summation or

subtraction, it takes �	
�, which would always be the lower term in comparison

with polynomial multiplication. Let’s write the equation above more clear:

If

()()

adC

acB

dcbaA

=
=

++=

Then
()()

() CxCBAxB

dxcbxa

+⋅−−+⋅=
+⋅+⋅

2

Multiplication operations: CBA ,,

b. Give two divide-and-conquer algorithms for multiplying two polynomials of

degree-bound n that run in time �	
�
�� The first algorithm should divide the

input polynomial coefficients into a high half and a low half, and the second

algorithm should divide them according to whether their index is odd or even.

Answer: First let’s consider the naïve method of multiplying polynomials. We

would do the operations as follow:

()
()
() () () ()nn

nn
nn

nn

nn
nn

nn
nn

bxbxbxbaxaxaxaxBxA

bxbxbxbxB

axaxaxaxA

+⋅++⋅+⋅⋅+⋅++⋅+⋅=⋅

+⋅++⋅+⋅=

+⋅++⋅+⋅=

−
−−

−
−−

−
−−

−
−−

1
2

2
1

11
2

2
1

1

1
2

2
1

1

1
2

2
1

1

LL

L

L

Multiplication #: 2n

Operations: ji ba ⋅ while { }nji L,2,1, =

Algorithm 1:

Now, let’s consider the modified method of doing the same polynomial

multiplication:

() () () ()
() ()[]

() ()[]
() ()[]

() ()[]n
n

n
n

nn
nnn

n
n

n
n

nn
nnn

n
n

n
n

n
n

n
nn

n
n

n
n

n
n

n
nn

nn
nn

nn
nn

bxbxbbxbxbx

axaxaaxaxax

bxbxbxbxbxb

axaxaxaxaxa

bxbxbxbaxaxaxaxBxA

++⋅+⋅+++⋅+⋅⋅

×++⋅+⋅+++⋅+⋅⋅=

++⋅+⋅+⋅++⋅+⋅

×++⋅+⋅+⋅++⋅+⋅=

+⋅++⋅+⋅⋅+⋅++⋅+⋅=⋅

−
+

−
+

−−

−
+

−
+

−−

−
+

−
+

−−

−
+

−
+

−−
−

−−
−

−−

LL

LL

LL

LL

LL

22/
22/

12/
12/2/

22/
2

12/
1

2/

22/
22/

12/
12/2/

22/
2

12/
1

2/

22/
22/

12/
12/

2/
2/

2
2

1
1

22/
22/

12/
12/

2/
2/

2
2

1
1

1
2

2
1

11
2

2
1

1

If

()
()
()
() n

n
n

n
n

n
nn

n
n

n
n

n

n
nn

bxbxbxf

bxbxbxf

axaxaxf

axaxaxf

++⋅+⋅=

++⋅+⋅=

++⋅+⋅=

++⋅+⋅=

−
+

−
+

−−

−
+

−
+

−−

L

L

L

L

22/
22/

12/
12/4

2/
22/

2
12/

13

22/
22/

12/
12/2

2/
22/

2
12/

11

Then
() () ()
() () ()xfxfxxB

xfxfxxA
n

n

43
2/

21
2/

+⋅=

+⋅=

The objective function: () () () ()[] () ()[]xfxfxxfxfxxBxA nn
43

2/
21

2/ +⋅×+⋅=⋅

By looking at the last equation, if we consider () () () ()xfxfxfxf 4321 ,,, as

coefficients, we see that the problem is turned into a ()()dxcbxa +⋅+⋅ form,

which was discussed in part 1 of this paper. The conclusion was polynomial

multiplication of this from can be accomplished with 3 operations.

If we look at the form of ()xA and ()xB , we divide the problem by half of it size

and added a summation operation. As we discussed, the polynomial summation

and subtraction takes �	
� time to compute. Therefore, we have a recurrence

solution for our problem:

[] ()nO
n

TnT +




⋅=
2

3

We apply master method to solve this recurrence. We obtain the final run time of

the polynomial multiplication using this method. Since ()3lg2nO is higher term

than ()nO . Algorithm run in ()3lg2nO time

Algorithm 2:

Let’s divide the objective function in a different way. Instead of a higher half and

a lower half, we can also do odd index half and the even index half:

() () () ()
() ()[]

() ()[]
() ()[]

() ()[]n
nn

n
nn

n
nn

n
nn

n
nn

n
nn

n
nn

n
nn

nn
nn

nn
nn

bxbxbbxbxbx

axaxaaxaxax

bxbxbxbxbxb

axaxaxaxaxa

bxbxbxbaxaxaxaxBxA

++⋅+⋅+++⋅+⋅⋅

×++⋅+⋅+++⋅+⋅⋅=

++⋅+⋅+⋅++⋅+⋅

×++⋅+⋅+⋅++⋅+⋅=

+⋅++⋅+⋅⋅+⋅++⋅+⋅=⋅

−−
−

−−

−−
−

−−

−−
−

−−

−−
−

−−
−

−−
−

−−

LL

LL

LL

LL

LL

4
4

2
21

4
3

2
1

4
4

2
21

4
3

2
1

4
4

2
21

3
3

1
1

4
4

2
21

3
3

1
1

1
2

2
1

11
2

2
1

1

If

()
()
()
() n

nn

n
nn

n
nn

n
nn

bxbxbxg

bxbxbxg

axaxaxg

axaxaxg

++⋅+⋅=

++⋅+⋅=

++⋅+⋅=

++⋅+⋅=

−−

−
−−

−−
−

−−

L

L

L

L

4
4

2
24

1
4

3
2

13

4
4

2
22

1
4

3
2

11

Then
() () ()
() () ()xgxgxxB

xgxgxxA

43

21

+⋅=
+⋅=

The objective function: () () () ()[] () ()[]xgxgxxgxgxxBxA 4321 +⋅×+⋅=⋅

As we see, we again converted the objective function into a ()()dxcbxa +⋅+⋅ form.

The run time analysis for this algorithm, therefore, is also ()3lg2nO

c. Show that two
-bit integers can be multiplied in ()3lg2nO steps, where each

step operates on at most a constant number of 1-bit values.

Answer: We have two n-bit integers, 121 kkkk nn L− and 121 llll nn L− , where

100 ≤≤ ik and 100 ≤≤ il , ik , il represent the number on every digit,

{ }ni ,,2,1 L= . Obviously, we can also write them as:

12
2

1
1

12
2

1
1

101010

101010

llll

kkkk
n

n
n

n

n
n

n
n

+⋅++⋅+⋅

+⋅++⋅+⋅
−

−
−

−
−

−

L

L

Therefore the multiplication of these two integers is turned into a polynomial

multiplication problem. As we discussed above, by using divide-and-conquer, we

designed two algorithms to solve the polynomial multiplication problem of

degree-bound n with a run time ()3lg2nO . For each operation here, we only deal

with either k or �. They are integers with only 1-bit values. Therefore we can

multiplicity two
-bit integers with ()3lg2nO steps, where each step operates on at

most a constant number of 1-bit values.

