
Student: Yu Cheng (Jade) 

Math 475 

Homework #3 

March 1, 2010 

Section 4.6 

Exercise 36-a Let � be a set of � elements. How many different relations on � are there? 

Answer: On set � with � elements, we have the following facts. 
 Number of two different element pairs ��

�� 
 Number of relations on two different elements ��, 
� ∈ , �
, �� ∈  2 � ��

�� 
 Number of relations including the reflexive ones ��, �� ∈  2 � ��

�� � � 
 Number of ways to select these relations to form a relation on � 2����

���� 

2����
���� � 2

���!
�����!���� � 2�������� � 2�� . 

b. How many of these relations are reflexive? 

Answer: We still have 2 � ��
�� � � number of relations on element pairs to choose from, but we have to 

include the reflexive one, ��, �� ∈ .  There are � relations of this kind.  Therefore there are 

2�����
������� � 2����

�� � 2
���!

�����!�� � 2������ . 

c. How many of these relations are symmetric? 

Answer: To select only the symmetric relations on set � with � elements, we have the following facts. 
 Number of symmetric relation pairs between two elements ��

�� 
 Number of relations including the reflexive ones ��, �� ∈  ��

�� � � 
 Number of ways to select these relations to form a relation on � 2��

���� 

2��
���� � 2

�!
�����!���� � 2

������
� �� � 2

������
�  . 



d. How many of these relations are anti-symmetric? 

Answer: To select only the anti-symmetric relations on set � with � elements, we have the following facts. 
 Number of anti-symmetric relations between two elements ��

�� 
 Number of relations including the reflexive ones ��, �� ∈  ��

�� � � 
 Number of ways to select these relations to form a relation on � 2��

���� 

2��
���� � 2

�!
�����!���� � 2

������
� �� � 2

������
�  . 

e. How many of these relations are reflexive and symmetric? 

Answer: To select only the reflexive and symmetric relations on set � with � elements, we have the 
following facts. 

 Number of symmetric and reflexive relations between two elements ��
�� 

 Number of ways to select these relations to form a relation on � 2��
�� 

2��
�� � 2

�!
�����!�� � 2

������
�  . 

f. How many of these relations are reflexive and anti-symmetric? 

Answer: Subtracting the number of relations on � that are reflexive from the number of relations on � 
that are anti-symmetric would result the number of relations on � that are reflexive and anti-
symmetric. 

2��
�� � 2

�!
�����!�� � 2

������
�  . 

Exercise 37 Let ′ and " be two partial orders on a set �. Define a new relation  on � by �� if and only if 
both �′� and �"� hold. Prove that  is also a partial order on �. ( is called the intersection of 
′ and ".) 

Answer: According to the definition of partial order set, we need to prove three properties on the given 

relation : reflexive, transitive, and anti-symmetric hold. 
 

Reflexivity:  

 For all � ∈ �, we have ��, �� ∈ ′, since ′ is a partial order on �. 
 For all � ∈ �, we have ��, �� ∈ ′′, since ′′ is a partial order on �. 
 ⇒ For all � ∈ �, we have ��, �� ∈ , since both ��, �� ∈ ′ and ��, �� ∈ ′′ hold. 
 Therefore, ��, �� ∈  for all � ∈ �.   is a reflexive relation on �. 
 



Transitivity: 

 Assume ��, �� ∈  and ��, �� ∈  
 ⇒ ��, �� ∈ ′, ��, �� ∈ ′ and ��, �� ∈ ′′, ��, �� ∈ ′′. 
 ⇒ ��, �� ∈ ′, since ′ is a partial order; ��, �� ∈ ′′, since ′′ is a partial order. 
 ⇒ ��, �� ∈ , since��, �� ∈ ′ and ��, �� ∈ ′′ both hold. 
 Therefore, ��, �� ∈  ��, �� ∈  is followed by ��, �� ∈ .   is a transitive relation on �. 
 

Anti-symmetry: 

 Assume ��, �� ∈  and ��, �� ∈ , where �  �. 
 ⇒ ��, �� ∈ ′, ��, �� ∈ ′ and ��, �� ∈ ′′, ��, �� ∈ ′′, where �  �. 
 ⇒ This is a conflict, since ′ and ′′ are anti-symmetric relations on �. 
 Therefore, ��, �� ∈  is followed by ��, �� ∉ .   is an anti-symmetric relation on �. 

Exercise 39 Let �", #� be the partially ordered set with " � $0,1' and with 0 ( 1.  By identifying the subsets 
of a set � of � elements with the �-tuples of 0’s and 1’s, prove that the partially ordered set 
��, ⊆� can be identified with the n-fold direct product 

�", #� � �", #� � ⋯ � �", #�  �� +�,-./0� 

Answer: By identifying the subset relation of a set with a one element set and an empty set, we have, 

�, ⊆� is a partial order with  � 1∅, $�'3, and with ∅ ⊆ $�'.  There are � elements in set �, so 
we construct the following relations, 

 �: �1∅, $��'3, ⊆�  ↔ "�: �$0, 1', #� 
 �: �1∅, $��'3, ⊆�  ↔ "�: �$0, 1', #� 
 : :   : : : 

 �: �1∅, $��'3, ⊆�  ↔ "�: �$0, 1', #� 

⇒ 6789:;< � ��, ⊆� � ��, ⊆� � ⋯ � �� ⊆� ↔ �"�, #� � �"�, #� � ⋯ � �"� #� 
 

�"�, #� � �"�, #� � ⋯ � �"�, #� defines a partial order set on �-tuples of 0’s and 1’s.  So now we 
need to prove relation, 6789:;< � ��, ⊆� � ��, ⊆� � ⋯ � ��, ⊆�, is the same thing as the 
subset relation on � � $��, ��, ⋯ ��'.  Therefore, if ��, and �� are subsets of �, the goal is to 
prove ���, ��� ∈ 6789:;<., if and only �� ⊆ ��. 

 

If �� , and ��  are two subsets of � , and �� ⊆ �� , then let  �� � $��, ��, ⋯ , �=', and �� �
$��, ��, ⋯ , �= , �=��, ⋯ , �=�>'.  We can then rewrite these two sets in the form of, 

  Column #1 Column #2 Column #3 

 ��: $��', $��', ⋯ , $�=',  ∅=��, ∅=��, ⋯ , ∅=�>, ∅=�>�� , ⋯ , ∅� 

 ��: $��', $��', ⋯ , $�=',  $�=��', $�=��'  ⋯ , $�=�>', ∅=�>�� , ⋯ , ∅� 

 For column #1 $��' ⊆ $��';  $��' ⊆ $��'; ⋯ ; $�=' ⊆ $�=' , 



 For column #2  ∅=�� ⊆ $�=�� ';  ∅=�� ⊆ $��'; ⋯ ; ∅=�> ⊆ $�=�>' , 
 For column #3  ∅=�>�� ⊆ ∅=�>��;  ∅=�>�� ⊆ ∅=�>��; ⋯ ; ∅� ⊆ ∅�  

 ⇒  ���, ��� ∈ 6789:;<  according to the definition of relation product. 

If ���, ��� ∈ 6789:;<  then ��  and ��  have to satisfy the form above, therefore �� ⊆ �� .  

Therefore, we’ve shown that the partially ordered set ��, ⊆� is identified by the subsets of a set 
�  of �  elements with the �-tuples of 0’s and 1’s.  The following example illustrates this 
corresponding relationship between �-tuples of 0’s and 1’s with and subset relation.  We have 

� � $�, 
, ,', and 3-tuples of 0’s and 1’s. 

 

Exercise 40 Generalize Exercise 39 to the multiset of all combinations of the multiset � � $�� ⋅ ��, �� ⋅
��, ⋯ , �= ⋅ �='. 

Answer: Let �", #� be the partially ordered set with " � $0,1, ⋯ , �' and with 0 ( 1 (, ⋯ , ( � .  The 
partially ordered set ��, ⊆� on a multiset � � $�� ⋅ ��, �� ⋅ ��, ⋯ , �= ⋅ �=', can be identified by 
a A-tuples of 0’s, 1’s, …, and n’s. 

 �: �1∅, �� ⋅ $��'3, ⊆�  ↔ "�: �$0, 1, ⋯ , ��', #� 
 �: �1∅, �� ⋅ $��'3, ⊆�  ↔ "�: �$0, 1, ⋯ , ��', #� 
 : :   : : : 

 =: �1∅, �= ⋅ $�='3, ⊆�  ↔ "=: �$0, 1, ⋯ , �=', #� 

⇒ 6789:;< � ��, ⊆� � ��, ⊆� � ⋯ � �= ⊆� ↔ �"�, #� � �"�, #� � ⋯ � �"= #� 

The proof proceeds the same as the proof in Exercise 39.  The following example illustrates this 

corresponding relationship between �-tuples of 0’s, 1’s, …, and n’s with and subset relation on a 
multiset.  We have � � $�, �, 
, 
, ,', and 3-tuples of 0’s, 1’s, and 2’s. 

 



Exercise 42 Describe the cover relation for the partial order ⊆ on the collection B��� of an subsets of a set �. 

Answer: The cover relation for the partial order ⊆ on set � is the ⊂ relation.  In other words, the 
transitive closure of ⊂ together with the reflexive relations on set � makes the relation ⊆. 

Exercise 43 Let � � $�, 
, ,, D, E, +' and let the relation  on � be defined by �
, 
,, ,D, �E, E+, +D. 
Verify that  is the cover relation of a partially ordered set, and determine all the linear 
extensions of this partial order. 

Answer: The direct graph representation and the adjacent matrix representation of the given relation on 

set � � $�, 
, ,, D, E, +' are shown below. 
 

 

FG �

� 
 , D E +
�


,
D
E
+ H

I
I
I
I
J0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0K

L
L
L
L
M

The transitive and reflexive closure of the given relation can be represented as the following 

direct graph. 
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By evaluating the graph, and the adjacency matrix, it’s clear that this relation is reflexive, 

transitive and anti-symmetric.  Therefore, the given relation defines a partial order relation on 

� � $�, 
, ,, D, E, +'.  The hasse graph of the partial order relation is just the direct graph for the 
its cover relation.  After reordering the vertices and getting rid of the arrows, we have, 

 

The linear extensions are: ��, E, 
, +, ,, D� , ��, E, 
, ,, +, D� , ��, E, +, 
, ,, D�  ��, 
, E, +, ,, D� , 
��, 
, E, ,, +, D�, and ��, 
, ,, E, +, D�. 



Exercise 47-c Let Π� denote the set of all partitions of the set $1, 2, ⋯ , �' into nonempty sets.  Given two 
partitions O and P in Π_� , define O # P, provided that each part of O is contained in a part of P. 
Thus, the partition O can be obtained by partitioning the parts of P. This relation is usually 
expressed by saying that O is a refinement of P.  Construct the diagram of �Π�, #� for � �
1, 2, 3,  and 4. 

Answer: The hasse graph representation of this partial order relation on the partitions of set $1, 2, 3, 4' is: 

 

Exercise 49-a Prove that the intersection  ∩ U of two equivalence relations and U on a set � is also an 
equivalence relation on �. 

Answer: Let’s have  ∩ U � V.  To prove that V is a equivalence relation on �, is to show that V satisfies 
the three properties of the equivalence a relation. 

 

Reflexivity: assume ��, �� ∈ V is not true for all � ∈ �.  Say ��, �� ∉ V �  ∩ U, which is saying 
either ��, �� ∉  or ��, �� ∉ U.  This is a conflict with the fact that  and U are both reflexive.  So 
the assumption is wrong.  Hence, ��, �� ∈ V is true for all � ∈ �. 
 

Symmetry: assume ��, �� ∈ V, then we have ��, �� ∈  and ��, �� ∈ U.  ��, �� ∈  ⇒ ��, �� ∈ , 
and ��, �� ∈ U ⇒ ��, �� ∈ U , therefore, ��, �� ∈  ∩ U � V .  Hence, ��, �� ∈ V  is followed by 
��, �� ∈ V.  V is a symmetric relation. 
 

Transitivity: assume ��, �� ∈ V, and ��, �� ∈ V.  It follows ��, �� ∈ V ⇒ ��, �� ∈ , ��, �� ∈ U. 
And ��, �� ∈ V ⇒ ��, �� ∈ , ��, �� ∈ U.  Therefore we have ��, �� ∈ , ��, �� ∈  ⇒ ��, �� ∈ , 
and ��, �� ∈ U, ��, �� ∈ U ⇒ ��, �� ∈ U .  Since ��, �� ∈   and ��, �� ∈ U , ��, �� ∈  ∩ U � V .  

Hence, ��, �� ∈ V, and ��, �� ∈ V is followed by ��, �� ∈ V.  V is a transitive relation. 
 

So, we’ve shown that V �  ∩ U is a equivalence relation, given both  and U are equivalence 
relations. 



b. Is the union of two equivalence relations on W always an equivalence relation? 

Answer: The union of two equivalence relations is not an equivalence relation.  Specifically, the 

transitivity property is not preserved in the union operation.  Given below is a counter example: 

 

: U:  ∪ U: 

 

Obviously,  ∪ U in the example above is not a transitive relation.  �
, �� ∈  ∪ U, ��, ,� ∈  ∪ U, 
but �
, ,� ∉  ∪ U. 

Exercise 51 Let � be a positive integer, and let �� be the set of �! permutations of $1, 2, ⋯ , �'.  Let O and P 
be two permutations in ��, and define O # P provided that the set of inversions of O is a subset 
of the set of inversions ofP.  Verify that this defines a partial order on ��, called the inversion 

poset. Describe the cover relation for this partial order and then draw the diagram for the 

inversion poset �YZ, #�. 

Answer: Let O and P be two permutations in ��, then in this covering relation,  O is covered by P if the 
set of inversions of O, O[�\]7^[8�^ is contained by set of inversions ofP, P[�\]7^[8�^, O[�\]7^[8�^ ⊂
P[�\]7^[8�^.  The transitive, reflexive closure of this cover relation gives the inversion poset. 

 

The following hasse graph represent �YZ, #�. 

 



Exercise 54 Let ��, #� be a finite partially ordered set. By Theorem 4.5.2 we know that ��, #� has a linear 
extension. Let � and 
 be incomparable elements of �.  Modify the proof of Theorem 4.5.2 to 

obtain a linear extension of ��, #� such that � ( 
.  

Answer: Since �, 
 are incomparable elements, we can find a partial order # ′on � that extends from 
��, #� by adding the relation between element � and 
, let � # ′
. According to Theorem 4.5.2, 
for a finite partial ordered set there is always a linear extension, we can obtain a linear extension 

on ��, # ′�. 
 

Since ��, # ′� is extended from ��, #�, this linear extension preserves all ordering relations on 
��, #�, therefore, this linear extension is also a linear extension for ��, #�.  At the same time, 
since �� # ′
�, in this linear extension, we have � ( 
.  Hence, we’ve shown that there exists a 
linear extension on ��, #� that � ( 
, if � and 
 are incomparable elements of �.  

Exercise 55 Use Exercise 54 to prove that a finite partially ordered set is the intersection of all its linear 

extensions. 

Answer: Way #1: According to the previous exercise, for a pair of elements � and 
 that are incomparable, 
we can always find a linear extension of ��, #� with � ( 
.  Let’s call this total order relation �.  

Since element � and 
 are equivalent in this assumption, so we can find a linear extension of 
��, #� with � _ 
.  Let call this total order relation �.  Since ��, 
� ∉ � and �
, �� ∉ �, then 

��, 
� ∉ � ∩ � and �
, �� ∉ � ∩ �.  Both ��, 
� and �
, �� are excluded from the intersection 
of these two linear extensions.  Follow the same logic the all relations between incomparable 

elements will be excluded from the linear extension intersection.  The resulting intersection is 

minimal that contains all of the original relation.  In other words, the intersection is ��, #� itself. 
 

Way #2: Assume the intersection of all linear extensions of partial order set ��, #� contains 
��, 
�, � ( 
 but ��, 
� ∉ ��, #�.  Since ��, 
� ∉ ��, #�, �, 
 are incomparable, according to the 
previous exercise, there exist a linear extension of ��, #� , so that � _ 
.  This is a conflict with 
the assumption that � ( 
 is in the intersection of the linear extensions.  Therefore, the 
intersection of all linear extensions does not contain any extra pair relations that are not in 

��, #�. 
 

Also, the intersection of the linear extensions of a partial order set ��, #� can’t contain any less 
that ��, #�, because every linear extension contains the ordering relations of the comparable 
elements.  These pairwise relations all transact to the intersection.  Therefore the intersection of 

all linear extensions contains at least ��, #�. 
 

Sum up the conclusions from the two paragraphs above, we conclude that the intersection of all 

linear extensions on a partial order set ��, #� is this partial order set itself. 


