The inspiration for this page is a video from the Mathologer entitled “The ARCTIC CIRCLE THEOREM or Why do physicists play dominoes?”. Be sure to check out his channel, one of the best on YouTube!
But what is an Aztec Diamond? The following description is an excerpt from Wikipedia.
In combinatorial mathematics, an Aztec diamond of order n consists of all squares of a square lattice whose centers (x,y) satisfy |x| + |y| ≤ n. Here n is a fixed integer, and the square lattice consists of unit squares with the origin as a vertex of 4 of them, so that both x and y are half-integers.
The Aztec diamond theorem states that the number of domino tilings of the Aztec diamond of order n is 2n(n+1)/2. The Arctic Circle theorem says that a random tiling of a large Aztec diamond tends to be frozen outside a certain circle.
It is common to color the tiles in the following fashion. First consider a checkerboard coloring of the diamond. Each tile will cover exactly one black square. Vertical tiles where the top square covers a black square, is colored in one color, and the other vertical tiles in a second. Similarly for horizontal tiles.